• 제목/요약/키워드: Coal fired power plants

검색결과 177건 처리시간 0.03초

Overview of coal-fired power plant ash situation and cement industry in Vietnam

  • Hong, Ha Thi Vu;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권3호
    • /
    • pp.57-62
    • /
    • 2018
  • The development of coal-fired power plants to ensure energy security and electricity consumption is a matter for the Vietnam economy. However, the huge amount of ash discharged is a major environmental challenge. It is estimated that by the end of 2017, the amount of ash in the country is about 40 million tons and annually emitted over 16.4 million tons. While the quantity of coal-fired power plant is rising, the ash content will increase year by year if the ash doesn't treat well. The ash will be increased from 61 million tons in 2018 to 109 million tons in 2020, 248 million tons in 2025 and 422 million tons in 2030. The difficulties of coal-fired power plants are the problem of ash handling, some plants are at risk of closure because there are not enough dump capacity to storage. Therefore, Vietnam is in need of urgent measures to treat a large amount of waste from coal-fired power plants. The specific objectives of this study were as follows: (1) provide an overview of coal ash situation produced by coal-fired power plants in Vietnam; (2) study about regulations related to coal ash treatment; (3) comprehend the literature review of the cement sector status.

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권5호
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

Economic analysis of biomass torrefaction plants integrated with corn ethanol plants and coal-fired power plants

  • Tiffany, Douglas G.;Lee, Won Fy;Morey, Vance;Kaliyan, Nalladurai
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.127-146
    • /
    • 2013
  • Torrefaction technologies convert assorted biomass feedstocks into energy-concentrated, carbon neutral fuel that is economically transported and easily ground for blending with fossil coals at numerous power plants around the world without needs to retrofit. Utilization of torrefied biomass in conventional electric generating units may be an increasingly attractive alternative for electricity generation as aging power plants in the world need to be upgraded or improved. This paper examines the economic feasibility of torrefaction in different scenarios by modeling torrefaction plants producing 136,078 t/year (150,000 ton/year) biocoal from wood and corn stover. The utilization of biocoal blends in existing coal-fired power plants is modeled to determine the demand for this fuel in the context of emerging policies regulating emissions from coal in the U.S. setting. Opportunities to co-locate torrefaction facilities adjacent to corn ethanol plants and coal-fired power plants are explored as means to improve economics for collaborating businesses. Life cycle analysis was conducted in parallel to this economic study and was used to determine environmental impacts of converting biomass to biocoal for blending in coal-fired power plants as well as the use of substantial flows of off-gasses produced in the torrefaction process. Sensitivity analysis of the financial rates of return of the different businesses has been performed to measure impacts of different factors, whether input prices, output prices, or policy measures that render costs or rewards for the businesses.

화력발전소 폐쇄와 항만인력 고용의 공정한 전환 (Coal-fired power plants closure and just transition of port labour employment)

  • 우수한;김두리
    • 무역학회지
    • /
    • 제45권5호
    • /
    • pp.55-74
    • /
    • 2020
  • This study examines the policy direction and specific countermeasures for addressing possible port labour issues from the perspective of Just Transition which may be raised by closing coal fired power plants in Korea. Current energy transition policy and port labour policy in Korea are reviewed and case studies in the countries which has experienced closure of coal fired power plants are undertaken. Although it varies from country to country, a similar approach was found that the employment problem of coal fired power plant closures and measures based on Just Transition regime to mitigate the negative impacts that occur in the region are the key to successful transition. It is suggested that countermeasures for port labour should be institutionalized for providing stakeholders with legal stability covering labours not only directly employed by the plants but also employed in entities in the whole supply chains.

MFCA를 적용한 환경부하 및 발전원가 분석 연구 : 석탄화력발전소 중심으로 (A Study on Environmental Impact and Cost Analysis in Electricity Generation Using MFCA For a Coal-fired Power Plant)

  • 임병선;박승욱
    • 대한안전경영과학회지
    • /
    • 제17권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Global warming has pressured companies to put a greater emphasis on environment management which allows them to reduce environmental impact and costs of their operations. In Korea, the coal-fired power plants take a large account of electricity generation at 31.7% of the total electricity usage in 2014. Thus, environmental impact of coal-fired power plants is significant. This paper illustrated how to compute environmental impact and costs in electricity generation at a coal-fired power plant using MFCA methodology. Compared to the traditional accounting, an advantage of MFCA is to provide information on electricity generation costs and environmental wastes incurring throughout the production process of electricity. Based on MFCA, the coal-fired power plant was able to reduce production cost of electricity by 52.3%, and environmental wastes by 47.7%. As a result, MFCA seemed to be an effective tool in environmental management for power plants.

다양한 탄종 연소에 따른 석탄화력 보일러 연소장애 및 연소현안에 대한 대처방안 연구 (A Study on Combustion Troubles, Issues and Countermeasures in the Coal Fired Power Plant Boilers with Various Coals)

  • 김춘근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.282-292
    • /
    • 2006
  • Various kinds of coals are supplied for coal fired power plants as the coal market situations are fluctuated with the high prices of oil and coals over the world. The quality of coal is decreasing as coal consumption increased and some specifications of coals are out of boiler design criteria. It could make combustion troubles such as coal clogging, spontaneous combustion, coal firing in the coal handling equipments, ash slag and clinker issues, etc. This paper covers combustion troubles, issues and countermeasures in the biggest coal fired power plant in Korea.

  • PDF

Review on Evaluation of Rare Earth Metals and Rare Valuable Metals Contained in Coal Ash of Coal-fired Power Plants in Korea

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.121-125
    • /
    • 2015
  • Distribution of rare earth metals (REMs) and rare valuable metals (RVMs) contents in coal ashes (fly ash, bottom ash, and pond ash) and leachate from 11 coal-fired power plants in Korea were investigated. Coal ashes and leachates were found to contain important REMs and RVMs such as Yttrium (Y) and Neodymium (Nd), which was in the range of 23~75 mg/kg. However, it still requires developing effective recovery and separation methods in order to utilize REMs and RVMs in ash and leachate. Recovery of valuable elements (Y and Nd) from various and extensive ash sources (8.21 million tons/year in 2013) can provide the existing power plants with additional profit; therefore, it can significantly improve economics of the power plants.

노후 석탄화력발전소 가동중단에 따른 발전소 주변지역의 초미세먼지 농도 감소효과 분석 (The Local Effects of Coal-fired Power Plant Shutdown on PM2.5 Concentration: Evidence from a Policy Experiment in Korea)

  • 이동규;성재훈
    • 자원ㆍ환경경제연구
    • /
    • 제27권2호
    • /
    • pp.315-337
    • /
    • 2018
  • 정부는 준공된 지 30년 이상 경과한 8기의 노후 석탄화력발전소를 2017년 6월 한 달간 가동중단하였다. 이번 정부의 조치는 일종의 정책실험으로 자연실험에 가까운 특성을 가지고 있다. 본고는 이러한 정책실험의 특성을 이용하여 가동중단 조치에 따른 초미세먼지 농도변화의 인과적 효과를 분석하였다. 이를 위해 본 연구에서는 정책대상 발전기 중 2기가 위치한 영동 화력발전소 인근 지점을 실험군으로, 그곳에서 약 40km 거리를 가진 삼척 지점을 대조군으로 하여 이중차분법을 실행하였다. 해당 대조군은 발전소 지역과 지리적, 지형적 특성은 유사하나 해당 발전소에서 배출된 초미세먼지로부터의 직접적인 영향은 크지 않다는 특징을 가지고 있다. 분석 결과, 이번 가동중단 조치로 영동석탄화력발전소 주변지역은 $3.7{\sim}4.4{\mu}g/m^3$의 초미세먼지 농도 감소효과가 발생한 것으로 분석되었다.

석탄 화력발전시설에서의 수은 배출계수 개발에 관한 연구 (A Study on the Development of the Mercury Emission Factor from Coal-fired Power Plant)

  • 김형천;박정민;장기원;이상보;정노을;송덕종;홍지형;이석조;김상균
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.172-181
    • /
    • 2012
  • Mercury is one of the most hazardous air pollutants. Recently, mercury has been a concern in domestic and overseas because it has lethal toxicity, long distance transport, persistence and bioaccumulation in the environment. Stationary combustion sources such as coal-fired power plants, waste incinerators, and cement kilns are the major sources of mercury emissions. The objectives of this study were to measure the concentration for mercury from coal-fired power plants and to calculate emission factor to estimate its emission. The results showed that the mercury concentrations in the flue gas were 1.63-3.03 mg/$Sm^3$ in anthracite-fired power plants (average 2.32 mg/$Sm^3$) and 1.95-3.33 mg/$Sm^3$ in bituminous-fired power plants (average 2.6 mg/$Sm^3$). Mercury emission factor was estimated as 25.74 mg/ton for anthracite-fired power plants and 12.48 mg/ton for bituminous-fired power plants. Because actual measurements are limited in quantity, it is desirable to refine our estimates by extending the actual measurements.

Current Management Status of Mercury Emissions from Coal Combustion Facilities: International Regulations, Sampling Methods, and Control Technologies

  • Lee, Sung-Jun;Pudasainee, Deepak;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.1-11
    • /
    • 2008
  • Mercury (Hg), which is mainly emitted from coal-fired power plants, remains one of the most toxic compounds to both humans and ecosystems. Hg pollution is not a local or regional issue, but a global issue. Hg compounds emitted from anthropogenic sources such as coal-fired power plants, incinerators, and boilers, can be transported over long distances. Since the last decade, many European countries, Canada, and especially the United States, have focused on technology to control Hg emissions. Korea has also recently showed an interest in managing Hg pollution from various combustion sources. Previous studies indicate that coal-fired power plants are one of the major sources of Hg in Korea. However, lack of Hg emission data and feasible emission controls have been major obstacles in Hg study. In order to achieve effective Hg control, understanding the characteristics of current Hg sampling methods and control technologies is essential. There is no one proven technology that fits all Hg emission sources, because Hg emission and control efficiency depend on fuel type, configuration of air pollution control devices, flue gas composition, among others. Therefore, a broad knowledge of Hg sampling and control technologies is necessary to select the most suitable method for each Hg-emitting source. In this paper, various Hg sampling methods, including wet chemistry, dry sorbents trap, field, and laboratory demonstrated control technologies, and international regulations, are introduced, with a focus on coal-fired power plants.