• Title/Summary/Keyword: Closed-loop structure

Search Result 230, Processing Time 0.024 seconds

A Robust Variable Structure Controller for the Mixed Tracking Control of Robot Manipulators (로봇 메니플레이터의 혼합 추적 제어를 위한 강인 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1908-1913
    • /
    • 2010
  • In this paper, a robust variable structure tracking controller is designed for the mixed tracking control of highly nonlinear rigid robot manipulators for the first time. The mixed control problem under consideration is extended from the basic tracking problem, with the different initial condition of both the planned trajectory and link of robots. This control problem in robotics is not addressed to until now. The tracking accuracy to the sliding trajectory after reaching is analyzed. The stability of the closed loop system is investigated in detail in Theorem 2. The results of Theorem 2 provide the stable condition for control gains. Combing the results of Theorem 1 and Theorem 2 gives rise to possibility of designing the improved variable structure tracking controller to guarantee the tracking error from the determined sliding trajectory within the prescribed accuracy after reaching. The usefulness of the algorithm has been demonstrated through simulation studies on the mixed tracking control of a two.link robot under parameter uncertainties and payload variations.

Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines (연료분사식 자동차엔진의 퍼지가변구조 제어시스템)

  • Nam, Sae-Kyu;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.

A Study on Non-Fragile Controller Design for Parameter Uncertain Systems (파라미터 불확실성 시스템에 대한 비약성 제어기 설계에 관한 연구)

  • 박성욱;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.272-272
    • /
    • 2000
  • since the controller is part or the overall closed-Loop system, it is necessary that the designed controller be able to tolerate some uncertainty in its coefficients. The adequate stability and performance margins are required for the designed nominal controllers. In the paper. we study the method to design the non-fragile fixed-structured controller for real parametric uncertain systems. When we impose the controller parameter perturbation, the structure of the controller must be given. Therefore, we assume that the controller has fixed-structure. The fixed-structure controller is practically necessary especially when the robust controller synthesis results in a high-order controller. In SISO systems, we propose the robust controller design method using the Mapping theorem. In the method, the plant uncertainty and controller Parameter are of the multilineal form in the stability and performance conditions. Then, the controller synthesis problem is easily recast to Linear Programming Problem.

  • PDF

Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers (크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정)

  • 최한호;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

THE INFLUENCE OF DRIVING FUNCTION ON FLOW DRIVEN BY PUMPING WITHOUT VALVES

  • Jung, Eun-Ok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.97-122
    • /
    • 2011
  • Fluid dynamics driven by pumping without valves (valveless pumping) shows interesting physics. Especially, the driving function to generate valveless pump mechanism is one of important factors. We consider a closed system of valveless pump which consists of flexible tube part and stiffer part. Fluid and structure (elastic tube) interaction motions are generated by the periodic compress-and-release actions on an asymmetric location of the elastic loop of tubing. In this work, we demonstrate how important the driving forcing function affects a net flow in the valveless circulatory system and investigate which parameter set of the system gives a more efficient net flow around the loop.

Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.78-82
    • /
    • 2002
  • In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix Inequalities theory following a transformation of the closed loop systems into Lur'e systems.

Performance Analysis of Rotation-lock Differential Precoding Scheme (회전로크 구조의 차분 선부호화 기법의 성능 분석)

  • Kim, Young Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Long term evolution (LTE) and LTE-Advanced (LTE-A) systems adopt closed-loop multiple-input multiple-output antenna techniques. Equal gain transmission which has equal gain property is the key factor in their codebook design. In this paper, a novel differential codebook structure which maintains the codebook design requirements of LTE or LTE-A systems. Especially, eight-phase shift keying (8-PSK) constellations are used as elements of codewords, which not only maintain equal gain property but also reduce the computation complexity of precoding and decoding function blocks. The equal gain property is very important to uplink because the performance of uplink is very sensitive to the peak-to-average power ratio (PAPR). Moreover, the operation of the proposed differential codebook is explained as a rotation-lock structure. As the results of computer simulations, the steady-state throughput performance of the proposed codebook shows at least 0.9dB of SNR better than those of the conventional LTE codebook with the same amount of feedback information.

A New Robust Continuos VSCS by Saturation Function for Uncertain Nonlinear Plants (불확실 비선형 플랜트를 위한 포화 함수에 의한 새로운 강인한 연속 가변구조제어시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of the nonlinear system function is separated into the tow parts, i.e., state dependent term and state independent term for extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

Open-Loop Pipeline ADC Design Techniques for High Speed & Low Power Consumption (고속 저전력 동작을 위한 개방형 파이프라인 ADC 설계 기법)

  • Kim Shinhoo;Kim Yunjeong;Youn Jaeyoun;Lim Shin-ll;Kang Sung-Mo;Kim Suki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.104-112
    • /
    • 2005
  • Some design techniques for high speed and low power pipelined 8-bit ADC are described. To perform high-speed operation with relatively low power consumption, open loop architecture is adopted, while closed loop architecture (with MDAC) is used in conventional pipeline ADC. A distributed track and hold amplifier and a cascading structure are also adopted to increase the sampling rate. To reduce the power consumption and the die area, the number of amplifiers in each stage are optimized and reduced with proposed zero-crossing point generation method. At 500-MHz sampling rate, simulation results show that the power consumption is 210mW including digital logic with 1.8V power supply. And the targeted ADC achieves ENOB of about 8-bit with input frequency up to 200-MHz and input range of 1.2Vpp (Differential). The ADC is designed using a $0.18{\mu}m$ 6-Metal 1-Poly CMOS process and occupies an area of $900{\mu}m{\times}500{\mu}m$