DOI QR코드

DOI QR Code

Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers

크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정

  • 최한호 (동국대학교 전기공학과) ;
  • 국태용 (성균관대학교 전기공학과)
  • Published : 2003.08.01

Abstract

This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

Keywords

References

  1. V. I. Utkin, 'Variable structure systems with sliding modes,' IEEE Trans. Automat. Contr., vol. 22, pp. 212-222, 1977 https://doi.org/10.1109/TAC.1977.1101446
  2. S. M. Madani-Esfahani, M. Hached and S. H. Zak, 'Estimation of sliding mode domains of uncertain variable structure systems with bounded controllers,' IEEE Trans. Automat. Contr., vol. 35, pp. 446-449, 1990 https://doi.org/10.1109/9.52300
  3. H. H. Choi and M. J. Chung, 'Estimation of asymptotic stability region of uncertain systems with bounded sliding mode controllers,' IEEE Trans. Automat. Contr., vol. 39, pp. 2275-2278, 1994 https://doi.org/10.1109/9.333775
  4. H. H. Choi, 'On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,' Automatica, vol. 35, pp. 1707-1715, 1999 https://doi.org/10.1016/S0005-1098(99)00081-3
  5. A. Albert, 'Conditions for positive and nonnegative definiteness in terms of pseudoinverses,' SIAM J. Appl. Math., vol. 17, pp. 434-440, 1969 https://doi.org/10.1137/0117041
  6. P. Gahinet and P. Apkarian, 'A linear matrix inequality approach to $H_{\infty}$ control,' Int. J. Robust and Nonlinear Control., vol. 4, pp. 421-448, 1994 https://doi.org/10.1002/rnc.4590040403
  7. P. Gahinet, A. Nemirovski and A. J. Laub, LMI Control Toolbox User's Guide, Natic, MA:The Math Works Inc., 1995