• Title/Summary/Keyword: Climatic Changes

Search Result 319, Processing Time 0.024 seconds

A Study on the Domestic Appllication of the Concept of Seed Transfer Zone in the U.S (미국 잠정종자이동구역(Seed transfer zone) 개념의 국내 적용 방안)

  • Kim, Chae-Young;Kim, Whee-Moon;Song, Won-Kyong;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.39-56
    • /
    • 2021
  • The seed zone is a map that describes the areas where plant material can be transferred with little risk for properly adapting to a new location. The seed zone study is largely divided into studies based on genetic data and studies based on climatic data. Can be. This study was conducted to establish a temporary domestic seed zone applicable to the entire Korean Peninsula and evaluate its possibility based on the US climate-based seed zone establishment methodology. The temporary seed zone was constructed in the same way as the US case by superimposing the data obtained by dividing the winter minimum temperature into 12 grades and the data obtained by dividing the annual heat: moisture index into 6 grades. As a result of the analysis, 65 temporary seed zones were formed throughout the Korean Peninsula, and the areas of the seed zones representing the smallest and largest areas were 3.0km2 and 29,423.0km2, respectively, and it was confirmed that they had an average size of about 5,064.9km2. Temporary seed zones applied in Korea show a pattern of changes in temperature according to the relatively horizontal forest zone, and it was confirmed that the area where the Baekdu-daegan ecological axis is located has a tendency to show lower dryness than other areas. This study applied the US climate-based seed zone methodology in Korea as a pilot, and confirmed the climatic similarity across the Korean Peninsula. Furthermore, it is expected to provide an optimal seed map that improves the success rate of restoration in the future by revising the seed zone grade suitable for the domestic environment in consideration of the results of this study and the possibility of seed adaptation to the field survey and environmental space.

Future Projection of Climatic Zone Shifts over Korean Peninsula under the RCP8.5 Scenario using High-definition Digital Agro-climate Maps (상세 전자기후지도를 이용한 미래 한반도 기후대 변화 전망)

  • Yun, Eun-jeong;Kim, Jin-Hee;Moon, Kyung Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • It is predicted that future climate warming will occur, and the subtropical climate zone currently confined to the south coast of Korea will gradually rise north. The shift of climate zone implies a change in area for cultivating crops. This study aimed to evaluate the current and future status of climate zones based on the high-resolution climate data of South Korea to prepare adaptation measures for cultivating crops under changing agricultural climate conditions. First, the climatic maps of South and North Korea were produced by using the high-resolution monthly maximum and minimum daily temperature and monthly cumulative precipitation produced during the past 30 years (1981-2010) covering South and North Korea. Then the climate zones of the Korean Peninsula were classified based on the Köppen climate classification. Second, the changes in climate zones were predicted by using the corrected monthly climate data of the Korean Peninsula (grid resolution 30-270m) based on the RCP8.5 scenario of the Korea Meteorological Administration. Köppen climate classification was applied based on the RCP8.5 scenario, the temperature and precipitation of the Korean Peninsula would continue to increase and the climate would become simpler. It was predicted that the temperate climate, appearing in the southern region of Korea, would be gradually expanded and the most of the Korean Peninsula, excluding some areas of Hamgkyeong and Pyeongan provinces in North Korea, would be classified as a temperate climate zone between 2071 and 2100. The subarctic climate would retreat to the north and the Korean Peninsula would become warmer and wetter in general.

Regional irrigation control modeling and regional climate characteristics Research on the correlation (지역별 관수제어 모델링 및 지역별 기후 특성과의 연관성에 관한 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Choi, Ahnryul;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.184-192
    • /
    • 2021
  • Domestic agriculture is facing real problems, such as a decrease in the population in rural areas, a shortage of labor due to an aging population, and increased risks due to the deepening of climate change. Smart farming technology is being developed to solve these problems. In the development of smart agricultural technology, irrigation control plays an important role in creating an optimal growth environment and is an important issue in terms of environmental protection. This paper is about the study of collecting and analyzing the rhizosphere environmental data of domestic paprika farms for the purpose of improving the quality of crops, reducing production costs, and increasing production. Irrigation control modeling presented in this paper Control modeling is to graphically present changes in a medium weight, feed, and drainage due to regional climatic features. To derive the graph, the parameters were determined through data collection and analysis, and the suggested irrigation control modeling method was applied to the collected rhizosphere environmental data to control irrigation in 6 regions (Gangwon-do, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, and Gyeongnam). The parameters were obtained and graphs were derived from them. After that, a study was conducted to analyze the derived parameters to verify the validity of the irrigation control modeling method and to correlate them with climatic features (average temperature and precipitation).

Synoptic Change Characteristics of the East Asia Climate Appeared in Seoul Rainfall and Climatic Index Data (서울지점 강우자료와 기후지표자료에 나타난 동아시아 기후의 종관적 변화특성)

  • Hwang, Seok Hwan;Kim, Joong Hoon;Yoo, Chulsang;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.409-417
    • /
    • 2009
  • In this study it was assessed the accuracy of the Chukwooki rainfall data in Seoul by comparing with tree-ring width index data, sunspot numbers, southern oscillation index (SOI) and global temperature anomaly. And it was investigated the correlations of climatic change and change characteristics in past north-east asia by comparisons of tree-ring width index data in near Korea. The results of this study shows that Chukwooki rainfall data has the strong reliance since the trends and depths of change are very well matched with other comparative data. And with the results by compared with tree-ring width index data in six sites of near Korea, climates of north-east asia are changed with strong correlations as being temporal and spatial and longterm periodic possibility of reproducing are exist on those changes. However characteristics of climate change post 1960 A.D. are investigated as represented differently to past although statistical moving characteristics or changing criterion are within the limitations of reproducing phase in the past since they represent the different trends and irregularity and their frequencies are increase. The results of this study are widely used on long-term forecasting for climate change in north-east asia.

Trends of Annual and Monthly FAO Penman-Monteith Reference Evapotranspiration (연별 및 월별 FAO Penman-Monteith 기준증발산 추세 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.65-77
    • /
    • 2008
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on annual and monthly FAO Penman-Monteith (FAO P-M) reference evapotranspiration, and energy and aerodynamic terms of FAO P-M reference evapotranspiration were studied. In this study, 21 climatological stations were selected. The statistical methods applied for trend analysis are Spearman rank test, Sen's test, linear regression analysis and analysis of actual variation ratio. Furthermore, the cluster analysis was applied to cluster 21 study stations by considering the geographical and topographical characteristics of study area. The study results indicate that urbanization affects the trend and amount of FAO P-M reference evapotranspiration, energy term and aerodynamic term; however, the result of Sen's test indicates that urbanization does not significantly affect the magnitude of trend (Sen's slope). The energy term increased at study stations located in coastal area; however, decreased at study stations located in inland area. The topographical slope of study area did not significantly influence on the trend of energy term. The aerodynamic term increased in both coastal area and inland area, indicating much significantly increasing trend in inland area, and it was also affected by the topographical slope of the study area.

Researches on fluvial terraces in Korea (한국의 하안단구 연구)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.17-33
    • /
    • 2011
  • This study summarizes the research history of fluvial terraces in Korea and examines the geomorphic properties of fluvial terraces in Korea based on the previous works. The research history of fluvial terraces in Korea can be divided into the three periods. The theories of fluvial terraces were spread by the early geomorphologists during the period of Japanese colonial era to mid-1980s. The dissertations on the fluvial terraces were intensively published during the late 1980s to 1990s and their discussions were the center of geomorphology researches in Korea. Since 2000s, the discussions have become more mature and researches have been quantitatively increased as the various methodologies have been developed. The fluvial terraces in Korea are mostly developed in the western and eastern parts of the Taebaek Mountains, upper and middle reaches of Han and Nakdong River, and in the western slopes of Sobaek Mountains, middle reaches of Namhan River, upper and middle reaches of Geum and Seomjin River. Along these rivers in actively uplifted areas, fluvial terraces with much higher altitude from riverbed are observable and incision rates are relatively high. In the sense of the formation ages, they have developed in not regular patterns by the climatic changes during the Quaternary, but in more complicated aspects by the environmental conditions such as climate, hydrology, geology and geomorphology in the specific drainage basins.

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Changes in the Climate in recent 60 years and Distribution of Agroclimatic Resources in Korea (우리나라 최근(最近) 60년(年의) 기후변화(氣候變化)에 따른 농업기후자원(農業氣候資源) 분포(分布))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.160-167
    • /
    • 1994
  • Meteorological elements such as air temperature, relative humidity, rainfall, sunshine duration, and so on observed by Korea Meteorological Administration, were analyzed to estimate the climatic change and to establish countermeasures in agriculture. Climatic differences were compared between two periods, early($1931{\sim}1960$) and late($1961{\sim}1990$), by calculating climatic resource indices, coldness index and warmth index of the two periods. Annual mean air temperatures of Seoul, Taegu, and Pusan in 1910's were 10.7, 12.3, and $13.4^{\circ}C$, respectively, having increased by $1.3^{\circ}C$ in Seoul and Taegu and by $0.9^{\circ}C$ in Pusan in 1990's. Mean air temperature in the spring($March{\sim}May$) increased by $0.69^{\circ}C$, which is a higher increasing rate than in the other seasons ($0.26{\sim}0.33^{\circ}C$). Regional differences exist in annual mean air temperature between the early and late part of the 20th century with little increase in this experiment did not germinate at pH 1.0. At pH 2.0, the flowering cabbage and geranium in the middle northern area, while in the southern part about $1^{\circ}C$increase was recorded during the last period. In the late period the annual rainfall increased by 100mm, except for the western coast area and the middle northern area. The P/E ratio showed a trend of an annual increase in the late period, being higher in the summer and lower in the winter. Relative humidity showed slight differences in seasons and regions but annual values did not. Duration of sunshine decreased by about an hour in the spring. Coldness index and warmth index of the late period were higher by 3.7 and 1.0 than those of the early period, respectively.

  • PDF

An Analysis of Changes in Rice Growth and Growth Period Using Climatic Tables of 1960s (1931~1960) and 2000s (1971~2000) (우리나라 1960년대 (1931~'60)와 2000년대 (1971~2000) 기후표를 이용한 벼 생육 및 재배기간 변화 분석)

  • Lee, Jeong-Taek;Shim, Kyo-Moon;Bang, Hea-Son;Kim, Myung-Hyun;Kang, Kee-Kyung;Na, Young-Eun;Han, Min-Su;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1018-1023
    • /
    • 2010
  • Climatic change was observed and analyzed in view of impacts on agricultural ecosystem, inter alia on rice cropping. The changed climate gave rise to earlier transplanting of rice seedling and later harvest after 40 years. Also phenological change and prolonged growth duration was observed. The meteorological data was selected from the standardized climatological data of 30 year normals of 1960s and 2000s, which were published by Korea Meteorological Administration. Development stages and growing periods of rice crop were compared by analyzing critical and optimum temperatures of each growth stage during these two periods. The first appearance date of $15^{\circ}C$ was ranged from Apr. 29 to May 23 in the year-normals of 1960s and it varied from Apr. 24 to May 16 in the normals of 2000s. The difference of the first appearance date of $15^{\circ}C$ was 0~10 days earlier in the year-normals of 2000s than the 1960s. The last harvesting date was determined to be the last appearance date of mean air temperature $15^{\circ}C$. The difference in the last appearance date of $15^{\circ}C$ was 1 to 13 days later in the year-normals of 2000s than in 1960s. The plant height of a rice variety, Hwayoung-byeo was 101~109 cm in 4 local areas, Seoul, Kangneung, Kwangju and Daegu. The plant height became 1~4 cm taller under warm condition. Rice grain yields estimated with daily weather data for the year-normals of 1960s and 2000s were 453~580 kg $10a^{-1}$ and 409~484 kg $10a^{-1}$ respectively. Rice grain yield of the former period was 50~100 kg $10a^{-1}$ higher than that hat in the later period.

The Influence of the Characteristics of Drainage Basin on Depositional Processes of the Alluvial Fan: An Example from the Cretaceous Duwon Formation in Goheung Area (유역분지 특성에 따른 충적선상지의 퇴적작용: 고흥군 백악기 두원층의 예)

  • Lee, Kyung Jin;Park, Seung-Ik;Lee, Hyojong;Gihm, Yong Sik
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.441-456
    • /
    • 2021
  • The Cretaceous Duwon Formation was studied on the basis of sedimentologic analysis in order to unravel geologic conditions for the development of the streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. The Duwon Formation unconformably overlies the Paleoproterozoic gneiss (basement). Based on the sedimentologic analysis, the Duwon Formation is interpreted to have been deposited in gravelly braided stream (FA-1) near the basement, laterally transitional to sandy braided stream (FA-2) and floodplain environments (FA-3) with distance (< 7 km) from the basement. Lateral changes in sedimentary facies and the well development of calcrete nodules in FA-3, together with radial paleocurrent directions measured in FA-1, are suggestive of the deposition of the Duwon Formation in streamflow-dominated alluvial fan under arid to semi-arid climatic conditions. Recent analysis of detrital zircon chronology suggests that sediments of the Duwon Formation were derived from the southwestern part of the Korean peninsula, including the western part of Yeongnam Massif and the southwestern part of Okcheon Belt. This implies the alluvial fan where the Duwon Formation accumulated had the large drainage basin. Because the large drainage basin can supply the significant amounts of water and temporarily store the sediments within the basin, watery floodwater carried sediments to the alluvial fan rather than the debris flows. Furthermore, the drainage basin largely composed of coarse-grained metamorphic and igneous rocks produced sand-grade sediments, preventing evolution of floodwater into debris flows. We suggest that combined effects of the large drainage basin and its coarse-grained metamorphic and igneous rocks provided favorable conditions for the development of streamflow-dominated alluvial fan, despite arid to semi-arid climatic conditions during sedimentation.