DOI QR코드

DOI QR Code

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution

어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용

  • Shim, Taeyong (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Bae, Eunhye (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Jung, Jinho (Department of Environmental Science and Ecological Engineering, Korea University)
  • 심태용 (고려대학교 환경생태공학과) ;
  • 배은혜 (고려대학교 환경생태공학과) ;
  • 정진호 (고려대학교 환경생태공학과)
  • Received : 2016.05.23
  • Accepted : 2016.06.20
  • Published : 2016.06.30

Abstract

Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

기후변화에 의한 온도 상승 및 강수량 변화는 수량 및 수질을 포함한 수환경의 변화로 이어져 결과적으로 수생생물의 서식지에 영향을 미친다. 이와 같은 서식지 변화는 생물종의 서식적합도 변화로 이어지고, 서식적합도에 의해 종분포가 결정된다. 따라서 기후변화에 의한 담수 어류의 서식적합성 변화를 예측하기 위하여 기존의 서식적합성 모형을 비교 및 분석하였다. 서식적합성 모형은 PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, River2D과 같은 서식지-수리 모형과 CLIMEX와 같은 서식지-생리 모형으로 구분하여 조사하였다. 서식지-수리 모형들은 수리학적 인자 (유속, 수심, 기질)를 이용하여 서식적합도를 예측하기 때문에, 수온을 포함한 수질의 영향을 평가할 수 없다. 반면, CLIMEX는 기후 인자에 대한 생물의 생리학적 반응을 평가하기 때문에, 물리적 서식지 (수리학적 인자)의 영향을 평가할 수 없다. 이러한 문제를 해결하기 위하여 서식지-수리 모형인 PHABSIM과 서식지-생리 모형인 CLIMEX의 구동 원리를 융합하여 기존의 모형들보다 다양한 환경 인자에 대한 영향을 예측할 수 있는 새로운 모형인 생태학적 서식적합성 모형 (EHSM)의 개념을 제안하였다. 이 모형은 기후변화에 의한 어류의 서식적합도 변화를 더욱 정확하게 예측할 수 있을 것으로 기대된다.

Acknowledgement

Supported by : 환경부

References

  1. Ahn, J.M. and Lyu, S. 2013. Analysis of flow bed change on hydraulic structure using CCHE2D:Focusing on Changnyong-Haman. Journal of Korea Water Resources Association 46: 707-717. (in Korean) https://doi.org/10.3741/JKWRA.2013.46.7.707
  2. Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J. and Henriksen, J. 1998. Stream Habitat Analysis Using the Instream Flow Incremental Methodology. U.S. Geological Survey, Biological Resources Division Information and Technology Report USGS/BRD-1998-0004, Fort Collins, CO, USA.
  3. Bradley, B.A., Olsson, A.D., Wang, O., Dickson, B.G., Pelech, L., Sesnie, S.E. and Zachmann, L.J. 2012. Species detection vs. habitat suitability: Are we biasing habitat suitability models with remotely sensed data? Ecological Modelling 244: 57-64. https://doi.org/10.1016/j.ecolmodel.2012.06.019
  4. Choi, H.S., 2008. Effect on water quality and fish habitat improvement of Wonju cheon by instream flow increasing. Journal of Wetlands Research 10: 57-68. (in Korean)
  5. Dyer, F., Sawah, S.E., Lucena-Moya, P., Harrison, E., Croke, B., Tschierschke, A., Griffiths, R., Brawata, R., Kath, J., Reynoldson, T. and Jakeman, T. 2013. Predicting Water Quality and Ecological Responses. National Climate Change Adaption Research Facility, Gold Coast, Australia.
  6. Franklin, J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, UK.
  7. Gallien, L., Munkemüller, T., Albert, C.H., Boulangeat, I. and Thuiller, W. 2010. Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions 16: 331-342. https://doi.org/10.1111/j.1472-4642.2010.00652.x
  8. Gard, M. 2009. Comparison of spawning habitat predictions of PHABSIM and River2D models. International Journal of River Basin Management 7: 55-71. https://doi.org/10.1080/15715124.2009.9635370
  9. Hirzel, A.H. and Lay, G.L. 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45: 1372-1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x
  10. Hooper, M.J., Andley, G.T., Cristol, D.A., and Maryoung, L.A., Noyes, P.D. and Pinkerton, K.E. 2013. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risk. Environmental Toxicology and Chemistry 32: 32-48. https://doi.org/10.1002/etc.2043
  11. Hudson, H.R., Byrom, A.E. and Chadderton, L. 2003. A Critique of IFIM - Instream Habitat Simulation in the New Zealand Context. Science for Conservation 231, Department of Conservation, Wellington, New Zealand.
  12. IPCC. 2013. Climate Change 2013: Physical Science Basis. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.
  13. Joo, G.J., Kim, D.H., Yoon, J.D. and Jeong, K.S. 2008. Climate changes and freshwater ecosystems in South Korea. Korean Society of Environmental Engineers 30: 1190-1196. (in Korean)
  14. Jung, S., Jang, J. and Choi, S-U. 2012. Physical habitat modeling in Dalcheon stream using fuzzy logic. Journal of Korea Water Resources Association 45: 229-242. (in Korean) https://doi.org/10.3741/JKWRA.2012.45.2.229
  15. Kearney, M. 2006. Habitat, environment and niche:what are we modelling? Oikos 115: 186-191. https://doi.org/10.1111/j.2006.0030-1299.14908.x
  16. Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecology Letters 12: 334-350. https://doi.org/10.1111/j.1461-0248.2008.01277.x
  17. Kim, K-O. 2015. Estimation of Ecological Flow and Habitat Suitability Index for Species at Jeoju-cheon upstream. Master Thesis, Chonbuk National University, Jeonju, Korea. (in Korean)
  18. Kim, S.J. 2011. Impact of Climate Change on Water Resources and Ecological Habitat in a River Basin. Ph.D. Dissertation, Inha University, Incheon, Korea. (in Korean)
  19. Kim, S.K., and Choi, S-U. 2015. Simulation of change in physical habitat of fish using the mobile bed model in a downstream river of dam. Ecology and Resilient Infrastructure 2: 317-323. (in Korean) https://doi.org/10.17820/eri.2015.2.4.317
  20. Koehn, J.D. 2004. Carp (Cyprinus carpio) as a powerful invader in Australian waterways. Freshwater Biology 49: 882-894. https://doi.org/10.1111/j.1365-2427.2004.01232.x
  21. Kriticos, D.J., Maywald, G.F., Yonow, T., Zurcher, E.J., Herrmann, N.I. and Sutherst, R.W. 2015. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases. Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.
  22. Lee, J.H., Jeong, S.M., Lee, M.H. and Lee, Y.S. 2006. Estimation of instream flow for fish habitat using instream flow incremental methodology (IFIM) for major tributaries in Han river basin. Journal of the Korean Society of Civil Engineers B 26: 153-160. (in Korean)
  23. Lee, S., Kim, S.K. and Choi, S-U. 2014. Physical habitat simulation considering stream morphology change due to flood. Journal of the Korean Society of Civil Engineers 34: 805-812. (in Korean) https://doi.org/10.12652/Ksce.2014.34.3.0805
  24. Li, J., Xia, Z. and Wang, Y. 2013. A time-series model for assessing instantaneous physical conditions in carp habitats. Ecohydrology 6: 393-401. https://doi.org/10.1002/eco.1280
  25. Macura, V., Stefunkova, Z. and Skrinar, A. 2016. Determination of the effect of water depth and flow velocity on the quality of an in-stream habitat in terms of climate change. Advances in Meteorology doi:10.1155/2016/4560378.
  26. Milhous, R. 1999. History, Theory, Use, and Limitations of the Physical Habitat Simulation System. Proceedings of the 3rd International Symposium on Ecohydraulics, Utah, USA.
  27. MOE. 2013. Development of Integrated Prediction Model in Aquatic Ecosystem (I). Ministry of Environment, Sejong, Korea. (in Korean)
  28. Mouton, A.M., Schneider, M., Depestele, J., Goethals, P.L.M. and Pauw, N.D. 2007. Fish habitat modelling as a tool for river management. Ecological Engineering 29: 305-315. https://doi.org/10.1016/j.ecoleng.2006.11.002
  29. Oh, K.R., Jeong, S.M., Lee, J.H., Choi, G.W. and Kim, D.H. 2008. Estimation of optimum flow needed for fish habitat by application of one and two dimensional physical habitat simulation model focused on Zacco Platypus. Journal of Korean Society of Hazard Mitigation 8: 117-123. (in Korean)
  30. Park, C-S. 2010. Evaluation of Instreamflow for Fish Habitat and Water Quality in the Seonghwan Stream. Master Thesis. Kongju National University, Kongju, Korea. (in Korean)
  31. Park, M.O. 2012. Study on Physical Characteristics Variation of Fish Habitat by Influence of Climate Change. Ph.D. Dissertation. Dong-Shin University, Naju, Korea. (in Korean)
  32. Rose, G.A., Young, B., Kulka, D.W., Goddard, S.V. and Fletcher, G.L. 2000. Distribution shifts and overfishing the northern cod (Gadus morhua): a view from the ocean. Canadian Journal of Fisheries and Aquatic Science 57: 644-663. https://doi.org/10.1139/f00-004
  33. Schneider, M., Noack, M., Gebler, T. and Kopecki, I. 2010. Handbook for the Habitat Simulation Model CASiMiR. Translated by Tuhtan, J., Schneider & Jorde Ecological Engineering GmbH and University of Stuttgart Institute of Hydraulic Engineering, Stuttgart, Germany.
  34. Sung, Y.D., Park, B.J., Joo, G.J. and Jung, K.S. 2005. The estimation of ecological flow recommendations for fish habitat. Journal of Korea Water Resources Association 38: 545-554. (in Korean) https://doi.org/10.3741/JKWRA.2005.38.7.545
  35. Taylor, S. and Kumar, L. 2013. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: A case study of Lantana carnara L. in Queensland, Australia. Journal of Environmental Management 114: 414-422. https://doi.org/10.1016/j.jenvman.2012.10.039
  36. Thorn, P. and Conallin, J. 2006. RHYHABSIM as a stream management tool: Case study in the river Kornerup catchment, Denmark. The Journal of Transdisciplinary Environmental Studies 5: 1-18.
  37. Vigano, G., Confortola, G., Fornaroli, R., Cabrini, R., Canobbio, S., Mezzanotte, V. and Bocchiola, D. 2015. Effects of future climate change on a river habitat in an Italian alpine catchment. Journal of Hydrologic Engineering 10.1061/(ASCE)HE.1943-5584.0001293,04015063.
  38. WDFW. 1996. Instream Flow Study Guidelines. Washington Department of Fish and Wildlife, Olympia, WA, USA.
  39. Wu, W., Inthasaro, P., He, Z. and Wang, S.S.Y. 2006. Comparison of 1-D and depth-averaged 2-D fish habitat suitability models. Proceedings of the Seventh International Conference on Hydroscience and Engineering. Philadelphia, USA. pp. 1-10.