• Title/Summary/Keyword: Habitat-physiologic model

Search Result 1, Processing Time 0.014 seconds

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.