• Title/Summary/Keyword: Habitat suitability

Search Result 191, Processing Time 0.024 seconds

Suitability Analysis of Eco-corridor for Korean Water Deer (Hydropotes Inermis) based on GIS and Fuzzy Function - A Case Study of Chuncheon City - (GIS와 퍼지함수(Fuzzy function)를 활용한 고라니의 생태통로 적지분석 - 춘천시를 대상으로 -)

  • Lee, Do-Hyung;Kil, Sung-Ho;Jeon, Seong-Woo
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.72-79
    • /
    • 2018
  • Rapid developments around the world have resulted in urban expansion, habitat destruction, habitat fragmentation, and pollution problems, which are the main reasons for the decline in biological diversity. The United Nations warns that many animals and plants will die out in the near future if this continues. This study was performed to propose a map of eco-corridor suitability analysis of Korean water deer(Hydropotes Inermis) to enhance biodiversity in Chuncheon city. Eight factors affecting habitat suitability were elevation, aspect, slope, forest type, distance to the road, distance to the stream, land use and green connectivity. Previous study analysis on the mobility behaviour of the Korean water deer(Hydropotes Inermis) produced a habitat suitability map by determining the threshold and assigning a value between 0 and 1 depending on the habitat suitability using the fuzzy function. A method of analysis was proposed for a number of eco-corridor through comparative analysis of the data from the produced habitat suitability map and the road-kill point. The previous studies were focused on Backdudaegan region and national parks except for urban cities. The potential habitat map of Korean water deer could be helpful as a way to prevent habitat disconnection and increase species diversity in urban areas.

A Correlation Analysis between Physical Disturbance and Fish Habitat Suitability before and after Channel Structure Rehabilitation (하천구조 개선에 따른 어류 서식적합도와 물리적 교란의 상관분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • In this study, an optimal improvement method of stream channel structure is presented for the enhancement of fish habitat suitability by genetic algorithm. The correlation between fish habitat suitability and physical disturbance in stream is analyzed according to the changes of hydraulic characteristics by channel structure rehabilitation. Zacco koreanus which is an indicator fish of the soundness of aquatic ecosystem was selected as a restoration target species by investigating the community characteristics of fish fauna and river environments in Wonju stream. The habitat suitability is investigated by PHABSIM with the habitat suitability index of Zacco koreanus. Hydraulic analysis by HEC-RAS and physical disturbance evaluation in stream are carried out. The optimal channel width modified for the enhancement of fish habitat suitability is provided. The correlation analysis between habitat suitability and physical disturbance with the change of hydraulic characteristics by channel modification showed that the proper channel modification enhanced fish habitat suitability and mitigated physical disturbance in the stream. The improvement of physical disturbance score by the channel structure rehabilitation for the enhancement of fish habitat suitability was confirmed in this study.

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

A Suitability Selection for Marine Afforestation Using Habitat Evaluation Procedure (서식지 평가 방법을 이용한 바다숲 조성 해역의 적지 선정)

  • Oh, Tae-Geon;Kim, Yi-Cheong;Yang, Yong-Su;Kim, Chang-Gil;Lee, Moon-Ock
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.894-905
    • /
    • 2010
  • A habitat evaluation method was used to estimate the optimum suitability of the study area for the target algae. Habitat evaluation was carried out using an habitat evaluation procedure (HEP) so that the optimum suitability was quantitatively estimated for carrying out marine afforestation in the study area. According to the results of the suitability analysis, the variation of light and wave conditions according to depth showed the factors with the largest impact to involve the spatial distribution of suitable locations within the area. The total suitable area selected was calculated to be 18ha. The quality of the target algae (Ecklonia cava Kjellman) habitat was analyzed using an habitat suitability index (HSI) model of the HEP, which showed 0.55-0.907 (the maximum value being 1.0). This indicated that artificial reefs for afforestation should be installed to zonation type because the suitable area selected (The HSI value was 0.55~0.907) was distributed within the same depth line.

Eurasian Otter (Lutra lutra) Habitat Suitability Modeling Using GIS; A case study on Soraksan National Park

  • Park, Chong-Hwa;Joo, Wooyeong;Seo, Chang-Wan
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.501-513
    • /
    • 2002
  • Eurasian otter (Lutra lutra) is one of endangered wildlife species whose population size is declining in Korea. To manage and conserve habitat for Eurasian otter, it is crucial to understand which habitat components affect otter habitat qualities. The objectives of this study were to develop a habitat suitability model of Eurasian otter in Soraksan National Park, to validate the model in Odaesan National Park. The research methods of this study were as follows. First, trace data and characters of Eurasian otter habitat were collected with Geographic Information System (GIS) data and Global Positioning System (GPS) receivers between 2000 and 2002. Second, the habitat use factors were identified as habitat characteristics of Eurasian otter and classified with habitat use and availability analyses. Third, significant factors of habitat model were extracted by Chi-square test. The last, Eurasian Otter Habitat Suitability Model (EOHSM) was employed by logistic regression method. Otter habitat use was positively associated with the reeds and shrubs areas adjacent to streams, the size of boulders, and low human disturbance in Soraksan National Park by EOHSM. This model had a classification accuracy of 74.4% at cutoff value of 0.5. Model validation showed a classification accuracy of 86.6 % at cut off value of 0.5 for otter habitat in Odaesan National Park.

  • PDF

Site Assessment Using Habitat Suitability Index for Manila Clam Ruditapes philippinarum in Geunso Bay Tidal Flats (서식지 적합지수를 이용한 근소만 갯벌 바지락(Ruditapes philippinarum)의 어장적지평가)

  • Choi, Yong-Hyeon;Hong, SokJin;Jeon, Seung-Ryul;Cho, Yoon-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.5
    • /
    • pp.511-518
    • /
    • 2019
  • Evaluating the habitat suitability of potential aquaculture sites for cultured species is critical to the sustainable use of tidal flats. This study evaluated the habitat suitability index (HSI) of 12 sites in a tidal flat aquaculture farm at Geunso Bay, Taean, in June 2016. The parameters used to model the suitability index were Growth (water temperature, chlorophyll ${\alpha}$, hydrodynamics), Survival (sediment-sand, mean size, air exposure), and Environment (DO, salinity). The HSI was calculated using weighted and No weighted geometric means. The results showed high habitat suitability at the bay's entrance (HIS; No weighted, 0.60-0.70; weighted, 0.60). Hydrodynamics, air exposure, sediment-sand and mean size are thought to have a significant impact on habitat selection by Manila clams Ruditapes philippinarum. This study explored the optimum habitat for Manila clams by calculating the HSI, providing basic data for tidal flat management.

Using habitat suitability model for the wild boar (Sus scrofa Linnaeus) to select wildlife passage sites in extensively disturbed temperate forests

  • Rho, Paikho
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.163-173
    • /
    • 2015
  • The occurrence of wild boars (Sus scrofa Linnaeus) and reports of wildlife-vehicle conflicts (i.e., road-kill) involving them have increased in natural forest regions of Korea. In the past few decades, many wildlife passages have been constructed to reduce vehicle collisions involving wildlife species. However, few studies have assessed the habitat suitability of target wildlife species when locating the construction sites of wildlife passages. Target species rarely use wildlife passages if built in an inappropriate location. Therefore, a quantitative habitat model is required to find suitable sites for wildlife passages that can connect the fragmented forest patches of wildlife habitats in Korea. In this study, the wild boar was selected as the target species, and six environmental variables (percentage of Quercus forest, slope aspect, distance to roads, water accessibility, forest stand age and density) were measured. The habitat model for wild boars was developed with a Delphi survey, and habitat suitability maps were delineated for the provinces of Gangwon-do and Jeollanam-do. In this study, 298 and 64 boars were observed in Gangwon-do and Jeollanam-do, respectively. Observations of wild boars derived from the second nationwide natural environmental survey were used to evaluate the habitat model. Habitat suitability maps that superimposed existing road networks suggested that wild boar habitats were severely fragmented in both provinces, particularly in Gangwon-do. To connect the fragmented habitats and prevent wildlife-vehicle collisions, this study proposes 11 and 5 wildlife passage sites in Gangwon-do and Jeollanam-do, respectively.

Korean Groal Potential Habitat Suitability Model at Soraksan National Park Using Fuzzy Set and Multi-Criteria Evaluation (설악산국립공원내 산양(Nemorhaedus Caudatus Raddeanus)의 잠재 서식지 적합성 모형; 다기준평가기법(MCE)과 퍼지집합(Fuzzy Set)의 도입을 통하여)

  • Choi Tae-Young;Park Chong-Hwa
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.28-38
    • /
    • 2004
  • Korean goral (Nemorhaedus caudatus raddeanus) is one of the endangered species in Korea, and the rugged terrain of the Soraksan National Park (373㎢) is a critical habitat for the species. But the goral population is threatened by habitat fragmentation caused by roads and hiking trails. The objective of this study was to develop a potential habitat suitability model for Korean goral in the park, and the model was based on the concepts of fuzzy set theory and multi-criteria evaluation. The process of the suitability modeling could be divided into three steps. First, data for the modeling was collected by using field work and a literature survey. Collected data included 204 points of GPS data obtained through a goral trace survey and through the number of daily visitors to each hiking trail during the peak season of the park. Second, fuzzy set theory was employed for building a GIS data base related to environmental factors affecting the suitability of the goral habitat. Finally, a multiple-criteria evaluation was performed as the final step towards a goral habitat suitability model. The results of the study were as follows. First, characteristics of suitable habitats were the proximity to rock cliffs, scattered pine (Pinus densiflora) patches, ridges, the elevation of 700∼800m, and the aspect of south and southeast. Second, the habitat suitability model had a high classification accuracy of 93.9% for the analysis site, and 95.7% for the validation site at a cut off value of 0.5. Finally, 11.7% of habitatwith more than 0.5 of habitat suitability index was affected by roads and hiking trails in the park.

Analysis of Channel Habitat Characteristics for Soundness of Fish Community at Wonju-stream (원주천의 어류군집 건전화를 위한 하도의 서식구조 특성분석)

  • Choi, Heung Sik;Choi, Jun Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.311-317
    • /
    • 2009
  • Similarity indices between sampling sites are calculated and cluster analysis of fish community is carried out by UPGMA based on investigating fish fauna and water environment. The restoration indicators as target species of Wonju stream are selected Cottus poecilopus, Zacco temmincki, and Zacco platypus along upper, middle, and lower streams, respectively. For better habitat suitability, low flow increasing and induced water quality improving must be secured by sewer system rearrangement and watershed management. Composite habitat suitability of Zacco temmincki as target species at middle stream of Wonju stream improve significantly by low flow increasing, which is very important factor to improve habitat suitability. The changes of hydraulics of depth and velocity govern the habitat suitability in general, but the effects are not significant. Low flow increasing with the change of 10% reducing of lower channel improves the composite habitat suitability of 0.37~0.78 to their origin of 0.1~0.25, which represent the channel restoration scheme of Wonju stream for enhancing the habitat suitability of fish community.

Application of the Habitat Evaluation Procedure(HEP) for Legally Protected Wildbirds using Delphi Technique to Environmental Impact Assessment - In case of the Common Kestrel(Falco tinnunculus) in four areas (Paju, Siheung, Ansan, Hwaseong) - (델파이기법을 이용한 법적보호종 서식환경평가의 환경영향평가 적용방안 개발 - 파주시, 시흥시, 안산시, 화성시에서의 황조롱이를 대상으로 -)

  • Lee, Seok-Won;Rho, Paikho;Yoo, Jeong-Chil
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.3
    • /
    • pp.277-290
    • /
    • 2013
  • This study was carried out to propose the new procedure to apply Habitat Evaluation Procedure(HEP) of target species using delphi technique, which is suitable to develop endangered species with few researches and ecological knowledges. To identify habitat quality of specific species in development project site, we can develop habitat model and create habitat suitability maps. In this study, we select the Common Kestrel(Falco tinnunculus) as target species in four areas(Paju, Siheung, Ansan, Hwaseong) which is located near the Seoul metropolitan area. The Delphi technique was selected to get the reliable information on the species and habitats requirements. Through the delphi approach, seven habitat components were determined as suitable variables for the Common Kestrel: density($n/km^2$) of small mammals, area($km^2$) of bare-grounds, pasturelands and riparian, and open area(%), spatial distribution and area of croplands, landscape diversity, breeding sites(tall trees, cliffs, high-rise buildings), and the length of shelf. Habitat variables used in this model were classified into two categories: % of suitable land-cover type(open areas, croplands, pasturelands, wetlands, and baregrounds) and the quality of feeding sites(within 250m from edges of woodlands). Habitat quality of the Common Kestrel was assessed against occurred sites derived from the nationwide survey. Predicted habitat suitability map were closely related to the observed sites of the endangered avian species in the study areas. With the habitat suitability map of the Common Kestrel, we assess the environmental impacts with habitat loss after development project in environmental impact assessment.