• Title/Summary/Keyword: Climate Mitigation

Search Result 376, Processing Time 0.026 seconds

Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach (기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성)

  • Nam, Won-Ho;Hong, Eun-Mi;Choi, Jin-Yong;Cho, Jaepil;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

Analysis on CO2 Mitigation Potential and Economic Effect of Green Life in the Residential Sector in Korea (녹색생활 실천에 따른 가정부문의 이산화탄소 감축잠재량 및 경제적 효과 분석)

  • Jin, Hyung Ah;Yeo, So Young;Yoon, So Won;Kim, Dai Gon;Seo, Jeong Hyeon;Hong, Yoo Deog;Han, Jin Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.668-681
    • /
    • 2013
  • The Korean government announced a national mid-term target to reduce 30% of greenhouse gas (GHG) emissions from business-as usual (BAU) level by 2020 in a voluntary and independent manner. In this study, we examined the $CO_2$ mitigation potential and conducted an economic effect analysis of green living actions in households in Korea. We also proposed some ways to implement green life to achieve the national target. If green lifestyle takes root in households nationwide, $CO_2$ emission would be reduced to 27.3% of the emission in 2007. This would save the country about 4.93 trillion won per year and each household could save about 300,000 won per year, which accounts for about 0.5% of GDP (as of 2007). Considering the five-year plan for green growth to invest 2% of GDP in green growth every year, this would not only reduce the economic burden on households, industries and the country but also increase economic growth potential by reinvesting the saved resources into green growth. Heating and lighting would be the greatest contributor to GHG mitigation of green life in the residential sector. It means we could achieve the national goal by reducing unnecessary heating and lighting and using energy-saving electric home appliances. The implementation of green living actions would reduce a significant amount of greenhouse gas emissions, ultimately relieving the burden on businesses to reduce GHG emissions. And it is one of the most cost-effective mitigation tools in order to achieve the mid-term GHG mitigation goal.

Effects of Clime Change on Spatio-Temporal Behavior of Drought Using SAD Analysis (SAD 해석을 이용한 기후변화가 가뭄의 시공간적 거동에 미치는 영향분석)

  • Choi, Chi-Hyun;Choi, Dae-Gyu;Kim, Eung-Seock;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In this study, the impact of climate change on the spatio-temporal behavior of extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate conditions. In our climate-change impact experiments, the future climate is based on two GCMs(CGCM3.1-T63 and CSIRO-MK3.0). As a result, in the case of CGCM3.1-T63 future drought events are similar to the present, but in the case of CSIRO-MK3.0 future drought risk is likely to increase. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Ecosystem Service Assessment of Urban Forest for Water Supply and Climate Mitigation of Seoul Metropolitan Area (환경공간정보를 이용한 수도권의 수자원 공급과 기후완화 기능을 위한 도시림의 생태계서비스 평가)

  • Lee, Soo Jeong;Yoo, Somin;Ham, Boyoung;Lim, Chul-Hee;Song, Cholho;Kim, Moonil;Kim, Sea Jin;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1119-1137
    • /
    • 2017
  • This study assessed the water provisioning and climate mitigation ecosystem services of the urban forest in Seoul and Gyeonggi-do. The ecosystem service assessment is conducted based on natural function, natural function and population, and natural function and the beneficiary of the ecosystem service. Then, the impact of climate change on ecosystem services is analyzed to figure out the sensitivity of the impact on the beneficiary when the natural function of forest destroys under climate change. Gyeonggi-do has higher function-based water provisioning ecosystem service than Seoul. And population-based water provisioning ecosystem service appears to be higher in the densely populated area. On the other hand, beneficiary-based water provisioning ecosystem service by applying both natural water supply function and beneficiary distribution appears different with the result of population-based water provisioning service assessment. In other words, regions with high beneficiary population show higher ecosystem service than those with a low beneficiary population even though they have the same water storage function. In addition, climate change has a negative impact on the water provisioning ecosystem service. Under climate change, water provisioning service is expected to decrease by 26%. For climate mitigation service, regions close to the forest seem to have a low temperature, which indicates their high climate mitigation service. The center of the city with high beneficiary population shows high beneficiary-based ecosystem service. The climate change impacts the forest growth to decrease which affect the beneficiary-based climate mitigation ecosystem service to decrease by 33%. From this study, we conclude that beneficiary-based function and ecosystem service assessment is needed as well as the supply-based classification of forest function suggested by Korea Forest Service. In addition, we suggest that not only supply-based function classification and ecosystem service assessment but also beneficiary-based function classification and ecosystem service assessment is needed for managing the urban forest, which has been destroyed by climate change. This will contribute to revaluing cases where a forest with low natural function but high beneficiary-based ecosystem service, which is not considered under the current forest function-based assessment system. Moreover, this could assist in developing a suitable management plan for the urban forest.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF

Cluster analysis of city-level carbon mitigation in South Korea

  • Zhuo Li
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.189-198
    • /
    • 2023
  • The phenomenon of climate change is deteriorating which increased heatwaves, typhoons and heavy snowfalls in recent years. Followed by the 25th United nations framework convention on climate change(COP25), the world countries have achieved a consensus on achieving carbon neutrality. City plays a crucial role in achieving carbon mitigation as well as economic development. Considering economic and environmental factors, we selected 63 cities in South Korea to analyze carbon emission situation by Elbow method and K-means clustering algorithm. The results reflected that cities in South Korea can be categorized into 6 clusters, which are technology-intensive cities, light-manufacturing intensive cities, central-innovation intensive cities, heavy-manufacturing intensive cities, service-intensive cities, rural and household-intensive cities. Specific suggestions are provided to improve city-level carbon mitigation development.

An Exploratory Study on the Cause of the Poor Performance of Climate Change in Korea (우리나라 기후변화 대응의 저성과 원인에 대한 탐색적 연구 - 우리나라 CCPI(Climate Change Performance Index) 사례 중심 -)

  • Kim, Yeongsin;Kim, SeongHeon;Lee, Jieun;Song, Youngchul
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • The relevant ministries, including the Ministry of Environment in Korea, provided Post-2020 Long-term Mitigation Target and Implementation Plan. The plan consisted of four Business As Usual (BAU) reduction levels by 14.7%, 19.2%, 25.7%, and 31.3% until 2030. The Korean government finalized the mitigation target of 37%. But all the initial alternatives were below the goal, 30% from BAU, that has been promised to the international community as well as set out in the Framework Act on Low Carbon Green Growth. In order to achieve a specific goal, performance management should pursue "Justify doing the right things." Otherwise, performance management would not work properly. According to Kingdon's Policy Stream Framework, abnormal alternatives are difficult to be presented as scenarios because alternative building should focus on the role of the need to adhere to the basic principles and professionals. Such a result is possible only when the policy actors does not balance themselves. Performance management statistics has been analyzed by 6 years CCPI data since 2011, taking into account the impact after enactment. This study also has been complemented by a variety of sources, including the media, documents, and artifacts during the period. As a result, raising awareness about climate change was analyzed as one of the solutions because the climate change issue affects the normal performance management throughout the life of the people to stay linked to the environment.

The framework and application model for risk mitigation service based networks (농축산 전염병 위기완화서비스 체계구조 및 용용모델)

  • Chung, heechang;Kim, Dongil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.493-495
    • /
    • 2016
  • The framework and application model for risk mitigation service based on network provides monitoring function of the risk event data to be inputted and analyses it for mitigation process. Furthermore, it performs the analysis of the manmade calamities such as accident, building destruction, natural calamities caused by climate change, and animal harms caused by bird flu and foot-and-mouth disease occurring in livestock and wild animals, and provides the mitigation service of it. The application model for risk mitigation is combined with network and carries out the real time acquisition and monitoring of risk events, and provides mitigation service for the risks caused by calamities and reduces economic losses.

  • PDF

Discussion on Climate Finance: Issues and Perspectives (유엔기후변화협약 재정 분야 협상 쟁점 및 향후 전망)

  • Jung, Jione;Moon, Jinyoung
    • Journal of Environmental Policy
    • /
    • v.14 no.3
    • /
    • pp.119-136
    • /
    • 2015
  • As the means of implementation, the GCF and scaled-up climate finance compose major elements of a new climate agreement that will be implemented in 2020. The new agreement will be applicable to all parties, implying that developing countries as well as developed countries will be responsible for reducing GHG emissions. Achieving the goal of mobilizing 100 billion dollars will depend on the efforts put forth by developing countries in terms of meaningful mitigation actions and transparent implementation of the mitigation targets. This paper describes a major achievement on the negotiation related to climate finance since the Convention established and addresses the issues and perspectives for the Paris Agreement.

  • PDF