DOI QR코드

DOI QR Code

Ecosystem Service Assessment of Urban Forest for Water Supply and Climate Mitigation of Seoul Metropolitan Area

환경공간정보를 이용한 수도권의 수자원 공급과 기후완화 기능을 위한 도시림의 생태계서비스 평가

  • Lee, Soo Jeong (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Yoo, Somin (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Ham, Boyoung (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lim, Chul-Hee (Institute of Life Science and Natural Resources, Korea University) ;
  • Song, Cholho (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Moonil (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Sea Jin (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Department of Environmental Science and Ecological Engineering, Korea University)
  • 이수정 (고려대학교 환경생태공학과) ;
  • 유소민 (고려대학교 환경생태공학과) ;
  • 함보영 (고려대학교 환경생태공학과) ;
  • 임철희 (고려대학교 생명자원연구소) ;
  • 송철호 (고려대학교 환경생태공학과) ;
  • 김문일 (고려대학교 환경생태공학과) ;
  • 김세진 (고려대학교 환경생태공학과) ;
  • 이우균 (고려대학교 환경생태공학과)
  • Received : 2017.11.13
  • Accepted : 2017.12.04
  • Published : 2017.12.31

Abstract

This study assessed the water provisioning and climate mitigation ecosystem services of the urban forest in Seoul and Gyeonggi-do. The ecosystem service assessment is conducted based on natural function, natural function and population, and natural function and the beneficiary of the ecosystem service. Then, the impact of climate change on ecosystem services is analyzed to figure out the sensitivity of the impact on the beneficiary when the natural function of forest destroys under climate change. Gyeonggi-do has higher function-based water provisioning ecosystem service than Seoul. And population-based water provisioning ecosystem service appears to be higher in the densely populated area. On the other hand, beneficiary-based water provisioning ecosystem service by applying both natural water supply function and beneficiary distribution appears different with the result of population-based water provisioning service assessment. In other words, regions with high beneficiary population show higher ecosystem service than those with a low beneficiary population even though they have the same water storage function. In addition, climate change has a negative impact on the water provisioning ecosystem service. Under climate change, water provisioning service is expected to decrease by 26%. For climate mitigation service, regions close to the forest seem to have a low temperature, which indicates their high climate mitigation service. The center of the city with high beneficiary population shows high beneficiary-based ecosystem service. The climate change impacts the forest growth to decrease which affect the beneficiary-based climate mitigation ecosystem service to decrease by 33%. From this study, we conclude that beneficiary-based function and ecosystem service assessment is needed as well as the supply-based classification of forest function suggested by Korea Forest Service. In addition, we suggest that not only supply-based function classification and ecosystem service assessment but also beneficiary-based function classification and ecosystem service assessment is needed for managing the urban forest, which has been destroyed by climate change. This will contribute to revaluing cases where a forest with low natural function but high beneficiary-based ecosystem service, which is not considered under the current forest function-based assessment system. Moreover, this could assist in developing a suitable management plan for the urban forest.

본 연구는 서울과 경기도 지역 도시숲의 수자원 공급 생태계서비스와 기후완화 생태계서비스를 평가하였다. 생태계서비스를 자연기능기반 서비스, 산림의 자연기능과 인구분포를 고려한 생태계서비스, 산림의 자연기능과 수혜자 분포를 고려한 생태계서비스의 세 가지 서비스로 구분하여 평가하고, 이후 기후변화가 생태계서비스에 미치는 영향을 평가하였다. 평가 결과, 토지피복과 토양 등 자연조건을 반영한 도시림의 수자원 공급서비스의 경우, 경기도가 서울보다 높은 서비스를 제공하는 것으로 나타났으며, 지역별 인구분포를 추가적으로 반영한 서비스 평가에서는 인구가 많은 곳에서 서비스가 높게 나타나는 양상을 보였다. 그러나 도시림의 수자원 수혜자 분포를 추가로 반영한 수자원 공급 생태계서비스 평가 결과는 인구분포를 반영한 서비스 평가 결과와 공간적으로 다르게 나타났다. 같은 수원함양 기능을 가진 지역이라도 인구분포나 물 사용 수혜자의 분포가 많은 지역일수록 높은 서비스 결과가 나타났다. 또한 기후변화가 수자원 공급 생태계에 서비스에 미치는 영향을 평가한 결과, 기후변화에 따른 수자원 공급 서비스는 평균적으로 26%정도 줄어들어 전반적인 수자원 공급 생태계서비스가 낮아지는 경향을 보였다. 기후완화부문의 경우, 산림으로부터 가까운 거리에 있을수록 높은 온도저감 효과가 나타나 산림주변지역에서 높은 기후완화서비스가 나타났으며, 기후 완화 서비스의 수혜자 인구를 고려한 생태계서비스 평가에서는 수혜인구의 밀도가 높은 서울 도심지역에서 높은 서비스가 나타났다. 기후변화에 따른 산림 생장량 변화를 반영하여 산림의 기후완화 생태계서비스의 변화를 평가한 결과, 평균적으로 약 33%의 서비스 감소가 나타났다. 본 연구의 결과는 도시림을 관리하기 위해서 산림청에서 제시하고 있는 공급기능기반의 6가지(자연환경보전, 산지재해방지, 목재생산, 산림휴양, 생활환경보전, 수원함양) 기능구분 외에 서비스를 수혜하는 수요자 기반의 기능 및 서비스가 평가의 필요성을 제시한다. 이는 기존의 산림의 공급기능기반의 평가에서 간과할 수 있는, 자연기능은 낮지만 수혜를 받는 시민들이 많아 높은 서비스 가치를 갖는 산림을 재평가하고 올바른 관리 계획을 수립하는데 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. Beckett, K.P., P.H. Freer-Smith, and G. Taylor, 1998. Urban woodlands: their role in reducing the effects of particulate pollution, Environmental Pollution, 99(3): 347-360. https://doi.org/10.1016/S0269-7491(98)00016-5
  2. Byun, W.H., K.W. Kim, E. Kim, T. Kim, G. Park, M.H. Park, C.R. Park, Y. Son, C. Oh, Y. Youn, D. Lee, W.K. Lee, I.Y. Lee, J.K. Chun, J. Chon, K. Cho, and J. Choi, 2010. Theory and Practice of Urban Forest, Yiche Press, Gyeonggido, Republic of Korea (in Korean).
  3. Chander, G., B.L. Markham, and D.L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 113: 893-903. https://doi.org/10.1016/j.rse.2009.01.007
  4. Cho, H.W., C.H. Song, S.W. Jeong, J.S. Kim, and W.K. Lee, 2016. Evaluation of the spatial distribution of water yield services based on precipitation and population, Journal of the Korean Association of Geographic Information Studies, 19(3): 1-15 (in Korean with English abstract). https://doi.org/10.11108/KAGIS.2016.19.3.001
  5. Choi, H., S. Kim, S. Jung, J. Kim, and H. Lim, 2016. Development of Long-term monitoring and management technology for forest water resources, Korea Forest Research Institute, Seoul, Republic of Korea (in Korean).
  6. Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O'Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt, 1997. The value of world's ecosystem services and natural capital, Nature, 387: 253-260. https://doi.org/10.1038/387253a0
  7. De Groot, R.S., M.A. Wilson, and R.M. Boumans, 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services, Ecological economics, 41(3): 393-408. https://doi.org/10.1016/S0921-8009(02)00089-7
  8. Dwyer, J.F., E.G. McPherson, H.W. Schroeder, and R.A. Rowntree, 1992. Assessing the benefits and costs of the urban forest, Journal of Arboriculture, 18: 227-227.
  9. Jeon, S.W., J. Kim, and H. Jung, 2013. A study on the forest classification for ecosystem services valuation - focused on forest type map and landcover Map, Journal of the Korea Society of Environmental Restoration Technology, 16(3): 31-39 (in Korean with English abstract). https://doi.org/10.13087/kosert.2013.16.3.031
  10. Jo, H.W., C.H. Song, S.W. Jeon, J.S. Kim, and W.K. Lee, 2016. Evaluation of the Spatial Distribution of Water Yield Service based on Precipitation and Population, Journal of the Korean Association of Geographic Information Studies, 19(3): 1-15 (in Korean with English abstract). https://doi.org/10.11108/KAGIS.2016.19.3.001
  11. Kim, G.S., C.H. Lim, S.J. Kim, J. Lee, Y. Son, and W.K. Lee, 2017. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971-2010, Sustainability, 9(6): 1-18.
  12. Kim, M.I., W.K. Lee, Y. Son, S.M. Yoo, G.M. Choi, and D.J. Chung, 2017. Assessing the impact of topographic and climatic factors on radial growth of major forest forming tree species of South Korea, Forest Ecology and Management, 404: 269-279. https://doi.org/10.1016/j.foreco.2017.08.048
  13. Korea Forest Service (KFS), 2016. National urban forest statistics, Korea Forest Service, Daejeon, Republic of Korea (in Korean).
  14. MA, 2005. Millennium Ecosystem Assessment Ecosystems and Human Well-being, Island Press, Washington D.C., USA.
  15. Ministry of Environment, 2017. Statistics of Waterworks, Ministry of Environment, Sejong, Republic of Korea (in Korean).
  16. Myeong, S.J., 2009. A study on strategies to mitigate urban heat island effects as part of climate change adaptation in urban areas, Korea Environment Institute, Sejong, Republic of Korea.
  17. Sharp, R., H.T. Tallis, T. Ricketts, A.D. Guerry, S.A.Wood, R. Chaplin-Kramer, E. Nelson, D.Ennaanay, S. Wolny, N. Olwero, K. Vigerstol,D. Pennington, G. Mendoza, J. Aukema, J.Foster, J. Forrest, D. Cameron, K. Arkema, E.Lonsdorf, C. Kennedy, G. Verutes, C.K. Kim,G. Guannel, M. Papenfus, J. Toft, M. Marsik, J.Bernhardt, R. Griffin, K. Glowinski, N. Chaumont,A. Perelman, M. Lacayo, L. Mandle, R. Griffin,P. Hamel, A.L. Vogl, L. Rogers, W. Bierbower,D. Denu, and J. Douglass, 2016. InVEST+VERSION+ User's Guide, The Natural CapitalProject, Stanford University, University ofMinnesota, The Nature Conservancy, and WorldWildlife Fund, Stanford, CA, USA.
  18. Seong, G., Y. Park, J. Chung, J. Kim, S. Kwon, and H. Kim, 2004, Development of forest functions classification map, Korea Forest Research Institute, Seoul, Republic of Korea (in Korean).
  19. Song, C.H., W.K. Lee, H.A. Choi, S.W. Jeon, J.U. Kim, J.S. Kim, and J.T. Kim, 2015. Application of InVEST Water Yield Model for Assessing Forest Water Provisioning Ecosystem Service, Journal of the Korean Association of Geographic Information Studies, 18(1): 120-135 (in Korean with English abstract). https://doi.org/10.11108/kagis.2015.18.1.120
  20. Song, C.H., W.K. Lee, H.A. Choi, J. Kim, S.W. Jeon, and J.S. Kim, 2016. Spatial assessment of ecosystem functions and services for air purification of forests in South Korea, Environmental Science & Policy, 63:27-34. https://doi.org/10.1016/j.envsci.2016.05.005
  21. W.D. Solecki, C. Rosenzweig, L. Parshall, G. Pope, M. Clark, J. Cox, and M. Wiencke, 2005. Mitigation of the heat island effect in urban New Jersey, Global Environmental Change Part B: Environmental Hazards, 6(1):39-49.
  22. United Nations, 2015. World Urbanization Prospects: The 2014 Revision, Highlights, Department of Economic and Social Affairs, Population Division, United Nations, New York, NY, USA.
  23. Vigerstol, K.L. and J.E. Aukema, 2011. A comparison of tools for modeling freshwater ecosystem services, Journal of Environmental Management, 92(10): 2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040
  24. Yoon, M., 2009. The application of remote sensing in quantifying the effect of green areas on urban temperature decrease: focusing on Seoul metropolitan area, Master's Thesis, Seoul National University, Seoul, Republic of Korea.
  25. Yoon, T.H., 2003. Eco-environment hydraulics, Cheong Moon Gak, Seoul, Republic of Korea.