• Title/Summary/Keyword: Clay mineralogy

Search Result 93, Processing Time 0.032 seconds

Correlation analysis between Engineering properties and mineralogy of clay sediments in New Busan Port area of the estuary of the Nakdong River (낙동강 유역 신항만부지 지역 점토 퇴적물의 광물조성과 토질특성의 상관성)

  • Lee, Son-Kap;Hwang, Jin-Yun;Chung, Seong-Gyo;Kim, Sung-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.483-490
    • /
    • 2004
  • Nakdong River Plain and its adjoining sea arc unusually covered by very thick soft clay sediments which were caned Pusan clays, sometimes reaching 40-70m. Since early 1990s a large number of geotechnical investigations have been carried out for land reclamation works in the area, including Busan city and its neighboring cities. Nevertheless, geotechnical engineers have paid little attention to studying geological characteristics on the clays, except some researches related to mineralogy, geo-chemistry, benthic foraminiferal fauna etc. The purpose of reserach is the knowledge of the correlation between engineering properties and mineralogy of clay sediments. The correlation analysis carry out multiple regression that have independent variables (Engineering properties) and dependent variables (mineralogy, geochemistry). Engineering properties of clay are correlated with the mineral compositions and geochemical characteristics. The result of the analysis is Wn = -0,6Feldspar + 1.1pH + 0.01TDS + 27.5, Ip = 0.36Clay + 1.44Vermiculite + 0.94clay mineral - 22.118, PI. = 0.005TDS - 0.31Feldspar + 22.43, eo = 0.02Vermiculite - 0.01Quartz + TDS + 0.93, ${\nu}$t = 0.009Quartz - 0.06Conductivity + 1.67, E50 = 1.94Vermicuhte - 0.96Kaohnite -0.53silt + 49.64, SR = -0.25Kaolinite + 1.5pH -2.3Conductivity, Cc = 0.03pH + TDS -0.2, LL = 0.5Clay + 1.3Vermiculite + 5.5Conductivity + 0.8Caly mineral -20.48

  • PDF

Microstructure, mineralogy and physical properties: techniques and application to the Pusan Clay

  • Locat, Jacques;Tanaka, Hiroyuki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11b
    • /
    • pp.15-31
    • /
    • 1999
  • The Pusan Clay is analyzed hereafter from a point of view of mineralogy and microstructure. Results indicate that the Pusan Clay is basically illitic in nature and that the soil microstructure reveals some characteristics which could be responsible for its brittle behavior as observed from sample disturbance. The overall analysis would tend to consider that the Pusan Clay profile analyzed here shows mechanical properties similar to well structured soils or so-called cemented soils.

  • PDF

부산 녹산-가덕도 지역에 분포하는 점토퇴적물의 광물조성과 공학적 특성에 대한 비교연구

  • 이선갑;황진연;정성교;김성욱;김국락
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.107-111
    • /
    • 2003
  • Estuary of Nakdong river area is composed of unconsolidated sediments including clays that are deposited varying from 40 to 70m thick. The purpose of research is the knowledge of the correlation between engineering properties and mineralogy of clay sediments. The correlation analysis carry out multiple regression that have independent variables (Engineering properties) and dependent variables (mineralogy, geochemistry). Engineering properties of clay are correlated with the mineral compositions and geochemical characteristics. The result of the analysis is Wn=-0.6 Feldspar + 1.1 pH + 0.01 TDS + 27.5, Ip=0.36 Clay + 1.44 Vermiculite + 0.94 clay mineral-22.88, P$_{L}$=0.005 TDS - 0.31 Feldspar + 22.43, e$_{o}$=0.02 Vermiculite - 0.01 Quartz + TDS + 0.93, E$_{50}$=1.94 Vermiculite-0.96 Kaolinite -0.53 silt + 49.64, SR=-0.25 Kaolinite + 1.5 pH - 2.3 Conductivity, CC = 0.03 pH + TDS - 0.2, LL = 0.5 Clay + 1.3 Vermiculite + 5.5 Conductivity + 0.8 Caly mineral-20.4.4.4.4

  • PDF

Composition and Genesis of Volcanic Ash Soils in Jeju Island, II. Mineralogy of Sand, Silt and Clay Fractions (제주도 화산회사인의 특성 및 생성에 관한 연구. II. 사, 미사, 점토의 광물학적 특성)

  • ;Rene Tavernier
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 1988
  • Mineralogy of sand, silt and clay fractions from the five chronosequence soils of Jeju Island is studied with the X-ray, TEM and SEM techniques. Soils of Songag and Donghong situated at lower elevations are generally developed on relatively of ash or alluvial deposits and contain mainly ferromagnesian minerals and feldspars, with some quartz, mica and volcanic glass. Crystalline minerals are dominant in the clay fraction; halloysite and vermiculite are abundant but small amounts of allophane are present. Clay migration results in well developed ferrigargillan, Soils of Pyeongdae and Heugag located at higher elevations are developed on relatively young volcanic ash with some contamination of continental aeolian dust probably containing quartz which may be come from acid ash shower. The absence of clay illuivation is due to the dominance of allophane. This clay mineral is associated with some gibbsite, imogolite and halloysite.

  • PDF

Single-Particle Mineralogy and Mixing State of Asian Dust, Spring, 2009 (2009년 봄철 황사 단일 입자의 광물학 몇 혼합상태)

  • Jeong, Gi-Young;Choi, Ho-Jeong;Kwon, Seok-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • The mineralogy and mixing state were investigated by the high resolution scanning electron microscopy combined with energy-dispersive X-ray analysis on particles of the total suspended solid (TSP) samples collected during the Asian dust event, spring, 2009. Relatively large particles were dominated by quartz, plagioclase, K-feldspar, amphibole, biotite, muscovite, chlorite, and calcite. Clay minerals usually occur as thin coatings on the coarse minerals or as aggregates. Calcite nanofibers are often admixed with clay platelets in the clay coatings and aggregates. Dust particles were classified on the basis of their main minerals. The single-particle mineralogy and mixing state of the TSP sample are consistent with those of $PM_{10}$ samples in previous studies.

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.

A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems

  • Lotanna Ohazuruike;Kyung Jae Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1495-1506
    • /
    • 2023
  • For the safe disposal of high-level radioactive waste using Engineered Barrier Systems (EBS), bentonite buffer is used by its high swelling capability and low hydraulic conductivity. When the bentonite buffer is contacted to heated pore water containing ions by radioactive decay, chemical alterations of minerals such as illitization reaction occur. Illitization of bentonite indicates the alteration of expandable smectite into non-expandable illite, which threatens the stability and integrity of EBS. This study intends to provide a thorough review on the information underlying in the illitization of bentonite, by covering basic clay mineralogy, smectite expansion, mechanisms and observation of illitization, and illitization in EBS. Since understanding of smectite illitization is crucial for securing the safety and integrity of nuclear waste disposal systems using bentonite buffer, this thorough review study is expected to provide essential and concise information for the preventive EBS design.

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF

Applied Mineralogy for the Conservation of Dinosaur Tracks in the Goseong Interchange Area (35번 고속도로 고성 교차로 지역 공룡발자국의 보존을 위한 응용광물학적 연구)

  • Jeong Gi Young;Kim Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • Cretaceous sedimentary rocks bearing dinosaur tracks in the Goseong interchange area were studied for their conservation and public display in the aspect of applied mineralogy. Black clay layers alternate with silt layers in the sedimentary rocks. The verical and horizontal fissures are commonly filled with calcite veinlets, supergenetic iron and manganese oxides. The rocks are composed of quartz, albite, K-feldspar, calcite, chlorite, illite, muscovite, and biotite, with minor apatite and rutile. Silt layers are relatively rich in calcite and albite, whereas clay layers are abundant in quartz, illite, and chlorite. Al, Fe, Mg, K, Ti, and P are enriched in the clay layers, while Ca, Na, and Mn in silt. Most of trace elements including V, Cr, Co, Ni, Cs, Zr, REE, Th, and U are enriched in clay layers. Inorganic carbon are present in silt layers as calcite, while organic carbon in black clay layers. The black clay layers were partly altered to yellow clay layers along the fissures, simultaneously with the decrease of organic carbon. Selective exfoliation of clay-rich black and yellow clay layers, calcite matrix of silt layers and calcite infillings of fissures are estimated as the major weakness potentially promoting chemical and physical degradation of the track-bearing rock specimens.

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea (국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Choo, Chang Oh;Kim, Woo-Seok;Seo, Yong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.109-126
    • /
    • 2015
  • Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.