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ABSTRACT

For the safe disposal of high-level radioactive waste using Engineered Barrier Systems (EBS), bentonite
buffer is used by its high swelling capability and low hydraulic conductivity. When the bentonite buffer is
contacted to heated pore water containing ions by radioactive decay, chemical alterations of minerals
such as illitization reaction occur. lllitization of bentonite indicates the alteration of expandable smectite
into non-expandable illite, which threatens the stability and integrity of EBS. This study intends to
provide a thorough review on the information underlying in the illitization of bentonite, by covering
basic clay mineralogy, smectite expansion, mechanisms and observation of illitization, and illitization in
EBS. Since understanding of smectite illitization is crucial for securing the safety and integrity of nuclear
waste disposal systems using bentonite buffer, this thorough review study is expected to provide
essential and concise information for the preventive EBS design.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Illitization

1. Introduction

According to International Energy Agency, nuclear energy
currently provides 30% of the world's power and 11% of the world's
electricity [1]. This is achieved through 450 active nuclear reactors
globally with 60 more being constructed. 98 of those reactors
operate in the US, supplying about 19% of US electricity while
generating over 80,000 metric tons of nuclear waste till date [2]. In
South Korea, 24 operating plants have accumulated 14,000 metric
tons at a rate of about 750 tons per year [3]. Most of the low and
intermediate level wastes are temporarily stored in shallow un-
derground repositories at the reactor sites. For the high-level nu-
clear waste, the global consensus is to store them in deep geological
repositories at depths of 200-1,000 m [2,4].

In general, the repository for high-level nuclear waste has two
main functions: confinement and retardation. Confinement re-
quires completely isolating the waste from the biosphere, while
retardation requires slowing down any eventual release of radio-
nuclides from nuclear wastes [5]. This is achieved by using a multi-
barrier approach, comprised of the natural barrier (the host rock),
and the engineered barrier, typically made up of a bentonite buffer
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and a metal canister. Bentonite is chosen for several adequate
properties including low permeability, adsorptive properties due to
large specific surface area, and its high swelling potential [6]. It
must be able to swell and contain the radionuclides, heal, or seal
any openings within the repository, and maintain low hydraulic
conductivity. Low hydraulic conductivity ensures that diffusion is
the dominant fluid transport mechanism [5]. This requires a hy-
draulic conductivity between 10~'4-10~"!' m/s and a minimum
swelling pressure of 0.1-1.0 MPa [4,5,7]. Published literature pri-
marily reports the swelling pressure for common bentonites pro-
posed for repository concepts to be greater than this: 2—6.5 MPa
Gyeongju bentonite [8,9], 10—40 MPa for MX-80 and Montigel [10],
105 kPa—5 MPa for GMZ bentonite (D. [11], and 1.8 MPa for FEBEX
bentonite [12]. Values for MX-80 (a 65—82% Na-montmorillonite)
and Montigel varied widely because the tests were conducted for
varying dry densities. For hydraulic conductivities, experimental
values show that most bentonite variants are in the range of 10~ -
1073 m/s [4,7,13].

However, some of these properties (like the swelling potential)
are affected when it is exposed to high temperatures. In particular,
the transformation of the swelling smectite in bentonite into illite is
a major concern, because of the non-expandability of illite. Studies
have shown that within 1000 years, the illitization of bentonite can
lead to 1-8% loss in smectite volume fraction at 100 °C, and 1-27%
at 200 °C [14]. Hence, studying and understanding the illitization
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Table of abbreviations

DC Dissolution and Crystallization

DECOVALEX DEvelopment of COupled models and their
VALidation against EXperiments

DGR Deep Geological Repositories

EBS Engineered Barrier System

FEBEX Full-scale Engineered Barrier EXperiment

I-S: [llite-Smectite

OR Ostwald Ripening

RO Intermediate randomly interstratified phase

R1 Regularly interstratified phase

R2 Regular and periodic phase

SEM Scanning Electron Microscope

SST Solid-State Transformation

TEM Transmission Electron Microscopy

THMC Thermo-Hydro-Mechanical-Chemical

XRD X-Ray Diffraction

phenomenon is a major focus of current state-of-the-art studies on
the reliability and safety of Engineered Barrier Systems (EBS). In
this regard, this paper aims to provide a thorough review on the
illitization of smectite. Section 2 provides the information of clay
mineralogy; section 3 provides the review on the mechanisms of
smectite-illite transformation; section 4 provides the review on the
illitization in the EBS.

2. Clay mineralogy
2.1. Basic clay mineralogy

Some of the earth's most important properties can be attributed
to its clay content [15]. Properties such as cation exchange, shrink-
swell properties, permeability, and various mechanical moduli can
be attributed to the clay content [16—18]. Often, these macro
properties can be explained by understanding the underlying micro
and crystal structure of clay minerals [15]. The microstructure and
charged surfaces dictate the reactivity of clays and the de-
formations (T. [19], which are comprised of particles, aggregates,
and clusters (T [20—23].

The particles are made up of hydrous aluminum silicates, ar-
ranged as sheets, with a typical dimension of 0.005 mm [24].
Because of this, they are often categorized as members of the
phyllosilicates group of minerals (from “phyllo” meaning “leaf”).
Each structural unit of a clay mineral is made up of tetrahedral or
octahedral sheets [1]. The tetrahedral sheets are made up of a
sequence of tetrahedra connected by shared oxygen atoms, while
the octahedral sheets contain octahedrons made up of four oxygen
atoms and two hydroxyl ions shared by various cations [1,25,26].
Depending on how the tetrahedral and octahedral sheets are
juxtaposed, clays are classified into 1:1 (also called T-O clay) and
2:1 layered structures (also called T-O-T clay), respectively. 1:1 layer
has octahedral and tetrahedral connections at the apices, while the
2:1 layer has one octahedral layer sandwiched between two
tetrahedral layers [18,27,28]. A typical structure is shown in Fig. 1.
They are among the most studied class of clay minerals, primarily
because of their swelling properties.

2.2. Smectite

Smectite is a group of expandable 2:1 phyllosilicate clay min-
erals, which are unique in their ability to swell upon hydration, low
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porosity, high surface area, and high cation exchange capacity [29];
H [30,31]. Minerals within this group include dioctahedral smec-
tites (montmorillonite, nontronite, and beidellite) and trioctahedral
smectites (hectorite, saponite, and stevensite) (Sparks, n.d.; [32,33].
Within this group, montmorillonite is most widely used for engi-
neering purposes. It is used as an additive in drilling mud and as
buffers for nuclear disposal primarily because of its low perme-
ability and high sorption capacity [33]. It can retard the transport of
radionuclides by adsorbing the metal ions, either through ion ex-
change or by surface complexation [34,35]. Additionally, their
swelling property enables them to contain the radionuclides under
high temperatures. The swelling is caused by the interaction be-
tween the charged layer and the cations contained in the sur-
rounding solution [36,37]. Different types of swelling can be
identified by understanding how the layer and cations interact.

2.3. Types of clay swelling

Clay swelling occurs in two ways—via crystalline stepwise for-
mation of mixed layers and osmotic swelling [38—41]. Crystalline
swelling was first observed [42] and is known to occur in all clay
minerals. It involves a stepwise phase transition, in which the water
molecules line up between unit layers resulting in an increased
interlayer spacing [43]. Here, hydration occurs on the external
particle interfaces and in the interlayer spaces. The adsorbed waters
are known to form one, two, three and even four distinct layers in
the interlayer as confirmed by experiments and simulations
[38,39,44—47]. Crystalline swelling can sometimes result in the
separation of layers which can be observed in X-Ray Diffraction
(XRD) analysis [48]. It depends on multiple factors, such as dry
density, swelling conditions, nature of the interlayer cation, and
water activity [49—52].

Osmotic swelling occurs in minerals containing exchangeable
cations in the interlayer at higher water content [43,48]. It results
from an osmotic migration of water molecules from the sur-
rounding water to the interlayer. It is driven by the cation con-
centration differences between the clay surface and the pore water,
and continues until equilibrium is reached [10,53]. The repulsion
between the electrical diffuse double layers on clay surfaces also
aids its development [48]. Often, it is the principal cause of insta-
bility, because it results in much larger volume increases in the
interlayer than crystalline swelling [43]. Monovalent smectites
such as Na-montmorillonite are known to reach clay platelet sep-
aration distances of 40 A and more for very dilute suspensions
[54—56]. For divalent smectites (Ca- or Mg montmorillonite), less
osmotic swelling occurs, because of the stronger ionic forces that
reduce double layer repulsion leading to a maximum platelet
separation distance of 19 A [48,55,57]; W [58]. Only Ca-
montmorillonite is known to accommodate more water outside
particles due to the inter-particle osmotic swelling caused by os-
motic forces on external surfaces [59,60]. Hence, both the interlayer
spaces and the external particle surfaces are important in swelling
[48]. This reiterates the importance of the clay structure in
explaining its behavior and explains why some of the swelling
capability is lost when smectites are transformed to illite.

3. Smectite-illite transformation (illitization)

[llite is a 2:1 micaceous clay mineral that precipitates naturally
in oversaturated conditions [61]. It is the primary component of
many argillaceous sediments and is produced from the thermo-
genic transformation of kaolinite or smectite in natural systems
[62]. During this transformation, K* is fixed within the interlayer
leading to a covalent bond with the Oxygen atoms [63]. This en-
sures that the interlayer swells to a lesser extent than the original
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Fig. 1. Schematic representation of both configurations 1:1 layer and 2:1 layer for clay minerals [27].

smectite. Because of its lower expandability, it is assumed to be the
non-expanding member, when it is present in illite-smectite (I-S)
layers series [64]. Hence, understanding its formation is crucial for
predicting the performance of bentonite barrier systems.

Mixed layers illitization is the gradual transformation of smec-
tite layers to illite, via a sequence of intermediate steps [65]. pro-
posed that smectite illitization follows an Ostwald's step rule, in
which the easiest phase forms first, and the reaction continues
stepwise until equilibrium. This means that in a smectite system, if
all minerals are equally exposed to the same conditions necessary
to form illite, the transformation would be heterogeneous. Several
authors have corroborated this and indicated the existence of two
or more structurally and morphologically distinct crystals [66—68].
[69] observed that smectite illitization proceeded in the phases of
intermediate randomly interstratified (Reichweite R0O) and regu-
larly interstratified (R1) layers during burial diagenesis. In hydro-
thermal experiments, similar trends are observed with illite-
smectite (I-S) becoming less expandable (more illitic) at elevated
temperatures [70,71]. It becomes R1-ordered at about 30—40%
expandability, R2-ordered (regular and periodic) at 15% expand-
ability, respectively [67]. [68] made additional observations of
flake-shape crystals for smectite-rich RO forms, lath-shaped R1, and
hexagonal shaped at 0% smectite (illite).

In natural sedimentary and geothermal systems, this appears as
a depth-dependent evolution. In such systems, randomly inter-
stratified mixed layer (I-S) are often observed at the top, while it
becomes progressively illitic (more ordered) with burial [72]; D
[64,65,68,73,74]. In certain studies, the depth-dependent evolution
was correlated with other properties: temperature [64], geologic
time [75], K™ concentration in fluid (W.-L. [76], and water/rock ratio
[70]. The ordering is often inferred from XRD measurements or
directly observed in high-resolution Transmission Electron Micro-
scopy (TEM) [66,77]; D. D [78].

In earlier studies, different methods of measurements also led to
different explanations for the crystal structure of [-S, based on XRD
results (see Fig. 2) [79]. explained the crystal structure using a
Markovian model as being made of MacEwan crystallites made up
of both smectite and illite layers [66]. It views the I—S layer as being
large. Alternatively, the fundamental particle model, based on the
analysis of TEM results, posits that I-S are made up of thinner
repeating crystallites [80]. Here, the smectite expansion occurs due
to activity at the interfaces between the fundamental particles
[66,81]. Most explanations of clay behavior use the fundamental
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Fig. 2. Mixed-layer I-S represented as a MacEwan crystallite and as an aggregate of
fundamental particles [66].

particle model. As such, it has become more common than the
Markovian model and is adopted here.

The smectite illitization process is slow but systematic due to
the lower energy barrier, compared with kaolinite illitization which
involves a higher energy barrier and requires an external source of
K* to occur [61]. Smectite illitization is the most important clay
mineral reaction when studying the diagenesis of sedimentary
rocks and is often used as a geothermometer [82]; W.-L [75,76]. It
has been observed in several natural systems and laboratory ex-
periments [83]; D. [84]; D. D. [85]; D [65]. The laboratory experi-
ments are often set up to mimic the processes postulated to have
caused illitization. As such, a brief look at the natural occurrence of
illitization is needed to understand the choice of experiments.
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3.1. Natural occurrence of illitization

Illitization has been observed in several geologic formations. In
the Gulf coast [72], showed the progressive formation of I-S from
smectite with depth of burial. Similar observations were made by
Ref. [86] for lower cretaceous shale in British Columbia and [87] for
the east Slovak basin. D [88]. reported that Gulf Coast smectite
illitization occurred at 150 °C.

Other authors focused on modeling the kinetics of the illitiza-
tion process in geological reservoirs [61]. modeled illite as musco-
vite mica to understand the control factors of illitization. They
studied the model reactions in marine sandstone/shale formations
between 50 and 200 °C. They reported that organic matter matu-
ration could also influence the reaction rate by increasing the Gibbs
free energy of the illitization. Their results illustrated the impor-
tance of the sequence of timing of geological processes on the
formation of illites [68]. chose to describe their I-S series using a
two-step reaction model, because a one-step reaction model could
not fit data from different wells. They used the difference of
ordering in splitting the series into distinct units of ordered and un-
ordered I-S layers. The first reaction involved the disordered I-S
layer, while the second reaction (ordered I-S) proceeded based
on the result of the first. The kinetic model they obtained showed
the stronger dependence on time than on temperature [68]. Their
rationale for using a two-step reaction was because the one-step
model was unable to fit the smectite data (from XRD) used to
derive the reaction model. Additionally, they posited that the
presence of distinct crystalline forms and a change in the illite
component within a smectite-illite sequence supported the exis-
tence of two-step reaction sequence [89,90].

[91] studied illitic clays from seven North American bentonites
and three North Sea sandstones. The samples were examined by
XRD, TEM, and Scanning Electron Microscope (SEM) and found
varying levels of illitization. While the bentonite clays were both
randomly and regularly interstratified, the sandstone illites were all
regularly interstratified. They explained their observation based on
a dissolution of smectite and precipitation/growth of illite particle
theory. Their experiment showed that I-S found from different
deposits, where shales and sandstones had different composition
trends. This was confirmed by Refs. [92,93]; and [94]. [92]
explained that these compositional differences lead to differences
in reaction kinetics.

In summary, an experiment to study illitization should involve
subjecting the samples to high temperatures (150—200 °C) for long
time. Local variations of the smectite and cations in pore fluid are
also significantly affecting the illitization of smectite. These find-
ings have influenced the design for the published experimental
studies of illitization.

3.2. Experimental observation of illitization

Several hydrothermal reaction experiments have been con-
ducted to mimic the natural formation of I-S. They each focused on
specific problems.

- conversion rates [88],
the effect of interlayer cations (D. [95],
octahedral substitution [96],
tetrahedral substitution (Huang and Otten, 1987),
solution chemistry [97],
kinetics of layer charge development [98],
- kinetics of illitization [77]; D. [65,99,100]; W.-L. [68,75,76,101],
- importance of temperature on illitization [67].

In all of these experiments, understanding the reaction kinetics
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of illitization is paramount. This is because, several uses of
bentonite in engineered systems rely on adequate knowledge of the
onset of illitization and the factors affecting it. Factors such as
temperature, time, salinity, and solid-liquid ratio have all been
studied in illitization experiments.

[65] conducted hydrothermal experiments on beidellite to
determine the reaction rate of smectite illitization. They concluded
that the illitization rate follows first-order kinetics. This model has
been found to be inadequate in modeling field observations
because the illitization of synthetic smectite was found to be much
less than that of natural smectite [88]; W.-L[76]. Consequently [75],
proposed a sixth-order kinetic equation based on field studies. They
observed mixed layer I-S minerals composed of 80% illite which
had been subjected to temperatures between 70 and 250 °C for ten
years to 300 My. Because the completion degree of illitization was
not 100%, considering the time involved, they suggested that illi-
tization was kinetic-controlled and not equilibrium-controlled. This
agreed with the Ostwald step rule proposed by Ref. [65]. Their
model was first order with respect to the pore fluid activity ratio
(e.g. KT/Na™), and fifth order with respect to the smectite mole
fraction, respectively. They stated that the sixth order model had
little or no physical-chemical significance and that the actual ki-
netic law was likely of a lower order [75]. Notwithstanding, the
sixth order equation has been widely used for modelling natural
smectite illitization [99].

[76] derived an experimental model by subjecting Na-saturated
Wyoming bentonite under the temperatures of 250—325 °C at
500 bars of pressure. The bentonite was saturated with 0.1 M—3 M
KCl solutions. Their results show that both Ca?>* and Mg?* retard
illitization, with Mg?* being a more dominant retarder. TEM study
showed morphological changes in the smectite like those reported
by Ref. [102] in natural hydrothermal environments. They assumed
a concentration of K in reservoir brine and used their model to
predict the extent of smectite illitization in several basins of
different depths and ages.

Interestingly, neither of these three models (W.-L [68,75,76].
had the same forms or parameters. To test their versatility and
general utility [100], used them to calculate the timing and extent
of illitization in four distinct environments (Denver Basin, Gulf
Coast, the Salton Sea Geothermal System, and Paris Basin) with
significantly varying ages, geothermal gradients, and K™ activities.
None of the models was successful in all four basins, further reit-
erating the need for customized characterization and modeling for
distinct smectites [100]. echoed the importance of temperature and
K™ in the illitization, but critiqued the lack of consideration for Al,
Si, pH, and the dissolution of K-feldspar in the systems.

[73] investigated the illitization by subjecting smectites to
250—400 °C temperatures, saturated with 1 M KCI solution at a
solid/solution mass ratio of 1:10. The reactions lasted between 5
and 120 days. TEM data showed a progressive replacement of
expandable layers into illite with diverse corresponding changes in
morphology, interlayer K content, and Al for Si substitution [73]. In
both the experimental models and natural systems, illitization
appears to be controlled by temperature, pressure, time, and
chemical conditions [73].

However, experimental studies have shown that it was depen-
dent on multiple factors such as solid to liquid ratio, pressure, pH,
di-or tri-octahedral nature of the smectite, K* availability and time.
By varying these, several experiments have succeeded in creating
illite in the laboratory [67]; D. [103]; D. [65,73,104]; W. L. [105]; W.-
L [70,76,106]. One aspect that is not fully answered is the question
of the exact temperature at which illitization occurs. The studies of
[107—109] have shown that illitization was possible even at room
temperature, contrary to earlier studies which opined it occurs at
>100 °C. Similar observations were made by Ref. [67] who observed
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illite in batch reactors of beidellite at 35—80 °C. However, most
nuclear repository designs still assume 200 °C as the temperature
for studying the effects of illitization on engineered barrier systems
[110].

3.3. Mechanisms of illitization

Fundamental phenomena of illitization of smectite are not fully
understood yet, such as the effects of temperature, time, and K*
content on the rate of illitization, the stoichiometry of the trans-
formation (conservation likelihood of aluminum), and the mecha-
nism of the transformation [64,100]. The mechanism of illitization
is important, because it determines how the reaction can be
modeled. It dictates the thermodynamic relationship between
minerals and the detailed reaction kinetics (D. D. [78]; D. D [111].
Several mechanisms of illitization have been proposed from the
previous researches [112].

(1) solid-state transformation (SST) [83,99,101,113—117],

(2) dissolution and crystallization (DC) [77,118];
[62,71,78,81,91,119—124], and

(3) Ostwald ripening (OR) [125].

D. D.

Fig. 3 below illustrates these three mechanisms.

SST involves a layer-by-layer solid state replacement of smectite
with illite. The process occurs in close topotactic contact with fluids
acting as catalysts and transport media for the process [83].
Because it is a gradual process, one expects gradual changes in
mineralogy, crystal structure, and chemical composition [83]. They
are characterized by small scale changes in the order of 1 nm, which
may be detected by TEM, analytical electron microscopy, and
electron diffraction [83]. It is readily seen through XRD as a series of
interstratified phases of I-S [77,100]. Studies that have observed
SSToften do so in low permeability environments such as bentonite
[62,99,126,127], shale and bentonite [114], and mudstone [117,128].
In their studies, the authors reported the compositional data

Solid state

(3-D Growth)

(1-D Growth)

Fig. 3. Different mechanisms for the hypothetical illitization. (a) Solid state trans-
formation. (b) Dissolution and crystallization/precipitation. (c) Ostwald ripening [66].
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showing that illite layers formed in earlier steps were conserved,
gradual change in I-S interlayer ordering and the absence of
morphological changes due to illitization [129]. [83] studied the
mixed layer I-S in 28 diagenetic North American and European
bentonite samples. By integrating XRD analysis is of polytype,
chemical, thermal, morphological (atomic force microscopy), and
oxygen isotope analysis, they found the illitization occurred via SST.
The strongest indication of this was the absence of morphological
changes. However, they observed significant lattice restructuring,
albeit in a less systematic and less extensive way as would be
typical of a DC mechanism.

In the second mechanism, smectite is changed to illite via a
dissolution-precipitation process in which fundamental smectite
particles are transformed to fundamental illite particles [130,131].
This involves the progressive dissolution of smectite in the reaction
front while the new phase is precipitated in situ. Other authors
posited that DC occurs via an Ostwald ripening process (D. D. [85];
D. D [78,132]. The fundamental particle changes in both DC
mechanisms require TEM to be visualized. In DC, the smectite is
completely dissolved followed by the precipitation of I-S or illite
with the smectite and illite particles existing separately. Conse-
quently, there are significant changes in clay structure and texture
as the structural memory of the original smectite is lost [83]. DC
mechanisms are believed to occur in high permeability environ-
ments such as hydrothermal systems, because liquid is required for
dissolution [125,133—135]. [73] stated that the actual illitization
mechanism was a DC process following an Ostwald step rule with
intermediate metastable [-S phases. Table 1 below summarizes the
differences between the stated mechanisms.

In summary, most authors now agree that more than single
process is possible as controlled by rock permeability which is
likely to change during high temperature illitization
[127,133,135—138]. [73] explains that in the early stages of dual
mechanism illitization, K™ sorption and fixation occurs in the
interlayer of smectite leading to RO structure due to an increase in
layer charge [139]; D. [103]; D [70,101,104,106,121,140,141]. In later
time, ordering is changed to R > 1 by a continuation of the first
reaction [106,121,140,141]. Alternatively, the loss of swelling could
lead to improved permeability and flow of fluids to promote the
smectite dissolution and precipitation of ordered 1-S [70,71,73].
[85] proposed a similar dual mechanism in which I-S transitions
from SST to DP with depth in the Gulf of Mexico. For hydrothermal
I-S from Japan [102], described SST by K-fixation, followed by DC,
and then OR [66]. However, OR has been discarded as an illitization
mechanism [142,143].

4. Illitization in engineered barrier systems (EBS)
4.1. EBS for nuclear waste disposal

Countries using nuclear power face the challenge of nuclear
waste disposal. To safely dispose nuclear waste, repositories are
designed to completely isolate the waste from the biosphere, while
slowing down any release of radionuclides for hundreds of thou-
sands of years in the event of a failure of the barrier [5,144]. To fulfill
these functions, wastes are emplaced in Deep Geological Re-
positories (DGR).

DGRs are engineered structures between the depth of 200 m
and 1,000 m [4]. Minimum depth ensures that it is not impacted by
erosion depending on the environmental conditions and disposal
concept, while burial beyond 1,000 m is uneconomic. DGRs are
designed to ensure that there is no impact on the background levels
of radioactivity in the disposal environment for geologic time. To
fulfill the critical isolation role, DGRs incorporate a system of nat-
ural and engineered barriers known as the multibarrier approach,
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Table 1
Typical trends of different illitization mechanisms [66].

Nuclear Engineering and Technology 55 (2023) 1495—1506

Mechanism Chemistry Texture Crystal structure
SST Gradual chemical changes proportional to extent e No major change in size and shape of platelets  Gradual structural changes (interlayer ordering and
of illitization e Smectite interlayers may grade laterally into illite polytype)

interlayers.

DC Permits abrupt chemical changes. e Permits formation of euhedral crystals. Permits abrupt structural changes between parent and
e Smectite crystals can be physically separated child crystals.
from illite crystals.
OR Constant chemical composition for overgrowth e Permits formation of euhedral crystals. Permits abrupt structural changes between template

and template o Crystal coarsening

and overgrowth.

which is illustrated in Fig. 4 [4,145].

The multiple barrier concept is the basis of geological disposal of
radioactive waste and is implemented in some repository concepts
[146,147]. Different countries have unique designs of how the
multibarrier is set up [1,144]. It involves the combination of natural
and/or engineered barriers to provide containment and radionu-
clide retardation. The stability of the barrier significantly depends
on its weakest link or component [148].

The natural barrier system (NBS) is comprised of the host rock
(usually crystalline or argillaceous rock), which is the geologic
formation hosting the DGR. In the US, several shale or argillite
basins with adequate disposal options have been identified
[149,150]. The engineered barrier system (EBS) includes the solid
matrix of the nuclear waste, the metallic canister surrounding the
waste, and the backfill/buffer placed around the canisters to seal
any cavities that may form in the future [4,151,152]. The material
used for each component is selected based on several factors
including the geological setting, the interactions between the nat-
ural host rock and EBS materials, the heat generation by the waste,
interaction of materials with ionizing radiation, materials corro-
sion, materials degradation due to microbial activity, and the po-
tential of materials to generate gasses because of irradiation,
corrosion, or microbial activity [4]. The main objectives of the EBS
are [147].

e to reduce corrosion rate of canisters,

e to limit hydraulic flow and transport,

o to limit the radionuclide migration from the waste-form to the
far-field (biosphere).

Surface
installations
Detail of disposal facility
& Host rock
# Bentonite backfill
® Cask

Firstly, corrosion of canister must be considered. Ideally, the EBS
canister should be made of noncorrodible material such as gold or
platinum, but due to the economic feasibility, other metal canisters
like stainless steel, carbon steel, copper, titanium, and nickel alloys
are generally preferred for EBS canisters [4,144]. When metals are
selected for canisters, knowledge of their corrosion across thou-
sands of years must be ascertained [146].

Secondly, the behavior of the buffer material across expected
conditions needs to be characterized. The buffer/backfill acts as
both a physical and a chemical barrier to radionuclide migration
[147]. The buffer material controls hydrochemistry (like pH), pro-
vides stability and protection for the waste, and limits radionuclide
migration. The materials are designed to fill any voids that may
arise in the repository [4]. For low and intermediate level wastes,
the buffer may be made of porous cement, which is designed for
extended pH-buffering, positive corrosion protection especially for
mild steel, and its ability to immobilize radionuclides [147,153].
However, the high pH could be a disadvantage particularly due to
the degradation of the buffer smectite at high pH [153].

For high level waste, the buffer is made up of compacted
expansive clay, typically bentonite or a mixture of bentonite and
sand, because of the bentonite's high swelling capacity, low
permeability, high adsorption capacity, and radionuclide retarda-
tion properties [144,154,155]. The major challenge with using
bentonite is the potential loss of its swelling properties when it is
heated. Under high temperature and K" concentration, the
bentonite might transform into illite [144]. While illite is a strong
adsorbent for radionuclides like Cesium, it swells less than the
parent smectite [63]. Recent modelling studies have confirmed that
temperatures as high as 200 °C may affect the swelling stress via

Fig. 4. Conceptual schematic of a deep geological repository for high level nuclear waste [12].
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illitization [110,156,157]. Such repository temperatures would
result from the continuous expulsion of heat from the radioactive
waste. In a recent study [ 156], states that the buffer material should
be engineered to control the peak temperature for thermal man-
agement to limit heat transfer to the far-field rock. This can be
achieved by mixing the bentonite with graphite or graphene oxide
(Y.-G [158]. Hence, understanding the different physics occurring as
well as their impacts on bentonite swelling are crucial for the safety
assessment of DGRs [155].

4.2. Use of bentonite for EBS buffer

Bentonite and bentonite/sand buffers are selected primarily for
EBS systems because their low permeability ensures that the
dominant transport mechanism of fluid in the barrier would be
diffusion, with little or no advection [5]. Additionally, they possess
self-sealing, high swelling, high cation exchange capacities, and
redox (reducing) properties [4,5]. This is due to the large proportion
of montmorillonite in bentonite which is both expansive and active
in ion exchange [4]. The swelling property is especially crucial as
bentonite is often used in blocks, pellets, or plinths depending on
the repository design [4,159]. Upon saturation, the bentonite swells
causing high pressure (or strain depending on the confinement
conditions) that reduces the permeability and hydraulic conduc-
tivity to diffusion-dominant levels. Bentonite should swell enough
to impede flow of radionuclide or water but not to a swelling
pressure that would jeopardize the safety of the repository [160].
Experimental studies indicate that for various bentonites, conduc-
tivities range from 1073-10~1 m?/s [4,161].

In addition, the high cation exchange capacity of bentonite en-
ables it to exchange mobile radionuclides and adsorb them in its
pores which significantly retards mobility [4]. Radionuclides may
be held on bentonite through adsorption, surface precipitation,
surface cluster formation, coprecipitation, or diffusion into an
existing mineral structure [1]. Usually, bentonite adsorbs the cat-
ions either by ion exchange at permanent sites or by surface
complexation [1,35]. Over the operation of the repository, the
bentonite barrier must retain this radionuclide adsorption and
swelling capabilities [ 162,163]. They should be retained irrespective
of several thermo-hydro-mechanical-chemical (THMC) phenom-
ena that may occur. The performance of the bentonite under these
phenomena must be understood for adequate prediction of the
long-term safety of the geological repositories.

Consequently, several studies have characterized the diverse
bentonites for use in engineered barrier systems [164—168]. Im-
pacts of the brine salinity and cation content on its swelling and
physicochemical properties have been studied [155,169,170]. [171]
reported swelling pressure of 1500 kg/m> MX-80 bentonite drop-
ped by 75% when the ionic strength of saturating NaCl was
increased from 0 M to 3 M, while it dropped by only 40% when it
was saturated with CaCl; for similar conditions.

Furthermore, temperature affects the rate and quantity of illi-
tization. In bentonite buffers, temperatures less than 100 °C are
recommended for long term stability [3]. The temperature distri-
bution would depend on the rock properties, rate of heat genera-
tion from the nuclear waste radiation, and the design of the
repository. To minimize thermal degradation, the bentonite buffer
needs to have a thermal conductivity, which is high enough to
rapidly conduct the heat to the host rock [172]. Based on their
modeling scenarios [110], showed that illitization led to 1-8% loss
in smectite mass fraction at 100 °C, and 1-27% at 200 °C, respec-
tively. Thermal pressurization also led to higher stresses in the case
of 200 °C, compared with the case of 100 °C. the simulations were
run for 1000 years using Kunigel-V1 bentonite (pH of 8.40) as the
buffer material and the Opalinus clay (pH of 7.40) as the host rock.
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However [173], concluded that the 100 °C limit often used in re-
pository designs was over-conservative. They found no significant
changes in the hydraulic properties even at 120 °C.

[14] warned that laboratory and mockup test results needed to
be taken with caution, because the conditions deviated signifi-
cantly from actual repository conditions. They were critical of the
timing of re-saturation versus maximum temperature, water
availability, and mechanical constraints in the experiments. In their
summary, they stated that.

- Chemical change of EBS bentonite is complex with debatable
implications.

- Illitization and the corresponding change in swelling capacity
were inconclusive from studies.

- Long-term high temperature experiments will be required to
fully understand the role of illitization in EBS and the impacts of
the countless variables influencing it.

4.3. Laboratory and field scale studies of EBS illitization

Several laboratory and repository scale experiments have been
performed to understand the behavior of the bentonite EBS under
several THMC processes. Results from them have greatly improved
simulation tools for the application in these days [174]. Some
studies have explored the impact of salinity on compacted
bentonite swelling [175—178]. They reiterated the change in
swelling properties of bentonite due to the chemical reaction with
the swelling pressures decreasing with an increase in pore water
salinity [179]. heated clay samples for one year after saturating the
samples with varying solutions: initially distilled water,
10,000 ppm of CaCl, solution, and 50% artificial ocean water
respectively. They found that K- and Na-feldspar dissolved slightly
at 130 °C but were completely dissolved at 200 °C, the hydraulic
conductivity increased 2-3 orders of magnitude, while the swelling
pressure was unchanged [122]. observed no chemical alteration
after heating Ca- and Na-smectite at 150 °C for two months. The
saturating solutions were comprised of 0.01 M NaOH (pH 12),
1 M K>CO3 and mixtures of 1 or 3 M KCl with 10~ or 1072 M KOH
[155]. found that exposure to the ground water in outer Ontario
(with a total dissolved solid of 300 g/L) and temperatures of 23 °C,
40 °C, and 80 °C was sufficient to affect the swelling ability of MX-
80 bentonite. Even the surface area, pore diameter, and pore vol-
ume significantly decreased after the reaction. They stated that
temperature alone was not significant, but that the loss in swelling
was correlated with the changes in the water chemistry.

The problem though is that laboratory conditions are often ideal,
sometimes closed, and unrepresentative of the geological re-
pository conditions. To reduce the gap, several underground
research laboratories have been constructed: the Opalinus clay rock
at the Mont Terri rock laboratory in Switzerland (1987); the Tour-
nemire site in France (1996); the Callovian—Oxfordian clay rocks at
the Centre de Meuse- Haute-Marne site in Bure, France (2004); and
the Boom clay rock at Hades, Mol site in Belgium (1980) [ 148]. Most
of them started as part of the DEvelopment of COupled models and
their VALidation against EXperiments (DECOVALEX) in nuclear
waste isolation project [180]. Recently, three principal projects are
ongoing in Europe: Mont Terri in Switzerland, Centre de Meuse-
Haute-Marne in France, and Hades at the Mol site in Belgium
[148,181]. Various tests are regularly conducted at these sites
including the Engineered Barrier experiment conducted at the
Mont Terri underground laboratory and Full-scale Engineered
Barrier Experiment (FEBEX) test performed at the Grimsel Test Site
prior to its dismantling in 2015 [182]. Such tests provide direct
observation of EBS THMC behavior and realistic data for validating
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diverse simulators.

FEBEX project is an EBS demonstration project based on the
Spanish reference concept for nuclear waste disposal. It includes
two large-scale tests: the in-situ Grimsel test in Switzerland and
the CIEMAT mock-up test in Spain [183]. It started in 1997 and was
the first long-term full-scale experiment with thermo-hydro-
mechanical variables recorded ever since [184—188]; X [150,189].
Similar experiments have been conducted over the years including
in-situ heating experiment (HE-E experiment) since 2011 in Mont
Terri; ATLAS experiment in the Mol rock laboratory; the TER
experiment at the Bure site; and the HE-D experiment in the Mont
Terri underground research laboratory in Switzerland FEBEX; the
Prototype Repository experiment in Apspd rock laboratory in
Sweden; and the Full-Scale Emplacement Experiment in the Mont
Terri laboratory [190]; X [189]. At Mont Terri alone, over 138 indi-
vidual experiments have been conducted between 1996 and 2016
but almost none has focused on illitization [151].

[14] warned that laboratory and mockup test results be taken
with caution, because the conditions deviate significantly from
actual repository conditions. They were critical of the timing of re-
saturation versus maximum temperature, water availability, and
mechanical constraints in the experiments.

5. Summary and conclusion

For the safe disposal of nuclear waste using EBS, bentonite
buffer is used because of its high swelling capability and low hy-
draulic conductivity. Illitization of bentonite involves the chemical
alteration of expandable smectite into non—expandable illite. This
paper provides a thorough review to provide the concise and
summarized information underlying in the illitization of bentonite,
by covering basic clay mineralogy, expandable smectite, mecha-
nisms and observation of illitization, and illitization in EBS. Un-
derstanding of smectite illitization is considered critical for the safe
design of nuclear waste disposal systems using bentonite buffer,
and this thorough review study is expected to provide detailed
information for the considerations to be made in safe EBS design.

Based on the study, the concluding remarks can be made as
follows.

- The process of smectite illitization is caused by the fixation of K™
ions within the interlayer of smectite. This creates a covalent
bond between the K+ and the Oxygen in the interlayer. This
makes illite to be of lower swelling potential than the original
smectite.
[llitization is not entirely disadvantageous. While illite is a lower
swelling clay, it is a very strong adsorbent for radionuclides,
particularly Cesium.
- There is a consensus that illitization proceeds either by a solid-
state transformation or dissolution-recrystallization process. In
models however, the dissolution precipitation approach is used
for implementation.
Data for reaction models of illitization are often based on
experimental values. While there are large sale field trials of
various EBS concepts ongoing, no data has been provided con-
cerning the transformation of smectite to illite. There is concern
that this may be because of field trials lasting for relatively short
time.
A major concern in illitization modelling is the source of K* for
the transformation. Most authors have assumed it comes from
K-feldspars within the bentonite. Few authors have treated it as
being sourced from the groundwater imbibing from the host
rock.
- lllitization is dependent on multiple factors. While most studies
have focused on temperature and time, others have revealed
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that the chemistry of saturating solution, as well as the specific
bentonite are also crucial. The consensus is that temperatures
above 200 °C are required. However, studies have reported illi-
tization at much lower temperatures (<50 °C). Hence, temper-
ature is not by itself a conclusive factor in determining
illitization. As such, it is highly recommended that adequate
characterization be conducted for each bentonite to be used as
generalization might be misleading.
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