The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.27-33
/
2021
The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.
Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.
Journal of the Korean Data and Information Science Society
/
제20권4호
/
pp.615-627
/
2009
본 연구의 목적은 효과적인 마케팅전략 수립에 도움이 되는 정보를 제공하는 데 있다. 이를 위하여 화장품구매 자료로부터 고객 구매형태와 재구매 간의 관계를 분석하여 고객충성도 예측모형을 개발하였다. 고객충성도는 재구매 가능성으로 측정하였다. 본 연구에서 사용된 자료는 국내의 한 화장품회사 고객들의 2000년부터 2008년까지 9년간의 구매자료 (432,528명, 2,440,107건)이다. 예측모형의 목표변수는 재구매 유무이고, 설명변수는 구매수량, 구매액, 휴면기간 등의 기본변수와 구매횟수와 거래 일자를 이용한 가공변수들이다. 충성도 예측모형은 데이터마이닝 기법인 로지스틱회귀, 의사결정나무 및 신경망모형을 사용하였다. 예측모형평가의 측도로는 하이드게 점수를 사용하였으며, 최대의 하이드게 점수를 가지는 분계점을 선택하였다. 각예측모형에서 선택된 변수는 유사하며, 모형비교 결과 세 모형의 효율과 평가측도의 차이는 크지 않았다. 정분류율이 다소 높고 해석과 활용이 쉬운 의사결정나무모형을 최종모형으로 선택했다.
본 연구는 대형 교통사고의 발생지점들을 특성별로 유형화하기 위하여 군집분석(Cluster hnalysis)을 행하고, 아울러 충돌 형태에 미치는 영향요인에 대한 영향 정도를 판별할 수 있도록 하기 위하여 수량화 이론 II류(Quantification II)와 C&RT(Classification and Regression Trees) 방법에 의해 분석을 실시하여 이에 대한 적합성을 평가함으로써, 정량적 척도의 간략화를 도모하고자 하였다. 그 결과, 발생 지점별 유형화에 따른 4개 집단의 판별 및 분류분석의 충돌 형태별 제반 영향요인들 특성은 집단별로 명확한 차이를 보이는 것으로 나타나, 교통사고에 대해 우선 시행되어져야 할 대책과 보완 대책들을 집단별로 체계적으로 제시할 수 있었다. 하지만 상당수 변수들에 결측치가 많아, 막대한 정보 손실이 초래되어 보다 심층적인 분석을 하기 어려웠는바, 이러한 문제점을 해결하기 위해서는 대형 교통사고 조사. 분석 시 표준화된 원 자료 시트의 작성을 의무화할 필요가 있는 것으로 나타났다.
Purpose: The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. Methods: A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. Results: The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. Conclusion: The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.
노년기의 사회참여는 사회적 상호작용의 기회를 제공하여 삶의 만족감을 고취시키기 때문에 성공적인 노화를 달성하기 위해서 중요하다. 이 연구는 우리나라 지역사회 노인을 대상으로 노년기 사회 활동의 관련요인과 사회 참여를 예측하는 통계적 분류 모형을 구축하였다. 분석 대상은 2015년도 지역사회 건강조사를 완료한 60세 이상 노인 1,864명(남 829명, 여 1,035명)이었다. 결과 변수는 지난 1달 간 사회 활동 경험(있음, 없음)으로 정의하였다. 예측모형은 Classification and Regression Trees(CRT) 알고리즘 기반 의사결정나무모형을 이용하여 구축하였다. 연구결과, 사회참여의 유의미한 분류 변수는 주관적 건강, 이웃과의 만남빈도, 친척과의 만남빈도, 배우자 동거여부이었고, 그 중에서도 가장 우선적으로 관여하는 예측 요인은 주관적 건강수준이었다. 본 연구의 결과를 기초로 도래하는 초고령사회의 성공적인 노화를 대비하기 위해서 노인의 사회 활동에 대한 사회적 관심과 지원이 요구된다.
최근, 소나무재선충(Bursaphelenchus xylophilus)에 의한 소나무림의 피해에 대한 사회적 심각성이 크게 대두되고 있다. 소나무 재선충에 의한 산림피해는 피해지 내에서는 매개충인 솔수염하늘소의 자연적인 영역확장에 의해 확산되는 반면, 전국적으로는 감염목의 인위적 반출 및 이동에 의해 확산이 진행되고 있다. 본 연구에서는 부산 대변항의 재선충 피해지내에서 항공사진 및 현지조사에 의해 피해목의 공간적인 위치를 파악하였고, 공간통계학적인 방법을 통하여 피해목의 공간분포유형, 피해발생과 지형인자간의 관계를 분석하였다. 또한, 지형공간자료를 통계학적 Tree 모형에 적용한 CART(Classification and Regression Trees)모형을 이용하여 재선충 피해의 자연적인 확산 예측 지도를 작성하였다. 본 연구를 통해 공간통계학적인 분석과 CART모형이 소나무재선충 피해의 공간분포 및 자연적 확산유형을 파악하는데 유용한 도구로 활용될 수 있음을 확인할 수 있었다.
The mortality rate in industrial accidents in South Korea was 11 per 100,000 workers in 2015. It's five times higher than the OECD average. Economic losses due to industrial accidents continue to grow, reaching 19 trillion won much more than natural disaster losses equivalent to 1.1 trillion won. It requires fundamental changes according to industrial safety management. In this study, We classified the risk of accidents in industrial complex of Ulju-gun using spatial analytics and data mining. We collected 119 data on accident data, factory characteristics data, company information such as sales amount, capital stock, building information, weather information, official land price, etc. Through the pre-processing and data convergence process, the analysis dataset was constructed. Then we conducted geographically weighted regression with spatial factors affecting fire incidents and calculated the risk of fire accidents with analytical model for combining Boosting and CART (Classification and Regression Tree). We drew the main factors that affect the fire accident. The drawn main factors are deterioration of buildings, capital stock, employee number, officially assessed land price and height of building. Finally the predicted accident rates were divided into four class (risk category-alert, hazard, caution, and attention) with Jenks Natural Breaks Classification. It is divided by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. As the analysis results were also visualized on maps, the danger zone can be intuitively checked. It is judged to be available in different policy decisions for different types, such as those used by different types of risk ratings.
최근 화물수요모형에 화물자동차 투어행태를 반영하기 위한 접근방법이 제시되었다. 화물자동차 이동을 투어기반 접근방법으로 모형화 하기 위해서는 화물자동차 투어와 투어유형에 대한 이해가 필요하다. 본 연구는 화물자동차 투어유형을 왕복형 투어와 체인형 투어로 구분하여 이들 투어유형 선택행태를 분석하였다. 투어유형 선택행태를 분석하기 위한 방법으로는 의사결정나무(decision tree)와 로짓모형(logit model)을 이용하였다. 분석결과 화물자동차 투어유형을 분류하는 설명변수로 화물적재율, 평균화물량, 총화물량이 선정되었으며, 의사결정나무와 로짓모형이 유사한 결과를 도출하였다. 또한 소형과 중형 화물자동차의 투어유형을 분류하는 설명변수가 큰 차이를 보이지 않음에 따라 화물자동차 투어를 계획함에 있어 화물을 어떻게 적재할 것인지가 가장 중요한 것으로 나타났다. 의사결정나무와 로짓모형의 예측력을 비교한 결과는 의사결정나무가 로짓모형에 비해 상대적으로 우수한 결과를 보였는데, 이는 화물자동차 투어유형을 분류함에 있어 로짓모형과 같이 설명변수의 선형적 결합에 의한 분류 보다는 의사결정나무와 같이 다수 설명변수들의 규칙조합으로 분류하는 것이 효과적임을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.