• 제목/요약/키워드: Classical laminate plate theory

검색결과 22건 처리시간 0.025초

등분포 축하중을 받고 첨가질량이 재하된 적충복합판의 고유진동수 (Natural Frequencies of Laminated Composite Plates Attached Point Mass Under an Uniform Axial-Loading)

  • 박제선;홍창우;이정호;이주형
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.235-243
    • /
    • 1999
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniformly distributed axial force and attached mass was carried out. Because it is complicated to analysis this type of plate by theory of antisymmetric laminate, possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that was able to neglect self-weight of plate was proposed.

  • PDF

등분포 축하중을 받고 첨가질량이 재하된 적층복합판의 고유진동수에 관한 연구 (Natural Frequencies of Laminated Composite Plates with Attached Mass Under an Uniform Axial-Loading)

  • 홍창우;김경진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.181-190
    • /
    • 2000
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniform axial-loading and attached mass was carried out. Because it is complicated to analyze this type of plate by theory of antisymmetric laminate possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that Was able to neglect self-weight of plate was proposed.

  • PDF

유한요소법을 이용한 코오드-고무 복합판의 동적특성에 관한 연구 (A study on the dynamic characteristics of the cord-rubber laminates rectangular plate by finite element method)

  • 김두만;김항욱
    • 오토저널
    • /
    • 제8권2호
    • /
    • pp.51-64
    • /
    • 1986
  • There has been considerable interest over the last twenty years in the subject of the elastic properties of the cord-rubber laminate. This has been due to the rather intensive study of the composites materials characteristics brought about by the increased use of rigid composites materials characteristics brought about by the increased use of rigid composites in many structural applications. The object of this study is to obtain the natural frequencies and modes of the simply supported cord-rubber laminate plates prior to the study on the analysis of the dynamic properties of the pneumatic tire. To obtain these natural frequencies and modes, the 12 degrees of freedom orthotropic rectangular plate finite elements are developed. By using classical lamination theory, the stress-strain relations are represented. The governing equation for the finite element is derived by energy method. To find the natural frequencies and modes, he eigenvalues and corresponding eigenvectors are computed by the well known Jacobi power method. In order to verify the capability of this present finite element, the results of the specially orthotropic plate and the angle-ply laminate plate are compared with the analytical solution. The analytical and numberical results are in good agreement. The following problems of the simply supported plate are analyzed by the present finite element. a) the natural frequencies and mode shapes of the cord-rubber laminate plate for various aspect ratio. b) The natural frequencies and mode shapes of the orthotropic plate with the rectangular hole in its center.

  • PDF

인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구 (A Study on Biomimetic Composite for Design of Artificial Hip Joint)

  • 김명욱;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계를 위한 응력해석에 관한 연구 (A Study on Stress Analysis for Design of Composites Shaft on Small Ship by Filament Winding Process)

  • 배창원;임철문;왕지석;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.617-622
    • /
    • 2001
  • The purpose of this study is to design and the analyze the stress of composited shaft which is wound by filament winding method. The composites shaft has high strength and reduction in weight compared to metal shaft. The classical laminate plate theory(CLT) was used fro analysis the stress, and for structure design. In order to replace metal shaft by composites shaft, the diameter of shaft was determined to $\phi$ 40. The ration of diameter was determined to 0.4 for torsional moment with CLT. In this result of analyzing the stress, composites shaft was safe $30^{\circ}~60^{\circ}$C of winding angle, and was fractured on $90^{\circ}$.

  • PDF

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA

  • Nicholas, P. Emmanuel;Padmanaban, K.P.;Vasudevan, D.
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.815-827
    • /
    • 2014
  • Buckling optimization of laminated composite plates is significant as they fail because of buckling under in-plane compressive loading. The plate is usually modeled without cutout so that the buckling strength is found analytically using classical laminate plate theory (CLPT). However in real world applications, the composite plates are modeled with cutouts for getting them assembled and to offer the provisions like windows, doors and control system. Finite element analysis (FEA) is used to analyze the buckling strength of the plate with cutouts and it leads to high computational cost when the plate is optimized. In this article, a genetic algorithm based optimization technique is used to optimize the composite plate with cutout. The computational time is highly reduced by replacing FEA with artificial neural network (ANN). The effectiveness of the proposed method is explored with two numerical examples.

적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선 (On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates)

  • 김준식;한 장우;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.249-257
    • /
    • 2011
  • 본 논문에서는 고전적 고차전단변형이론(HSDT)을 이용한 복합재료 적층평판의 응력해석 개선기법을 소개한다. 횡방향 응력들에 대해서만 변분을 취하는 혼합변분이론(Mixed variational theorem)을 통하여 횡방향 전단 변형에너지를 개선하였다. 가정된 횡방향 전단응력은 면내 변위가 5차 다항식을 갖는 고차 지그재그 이론으로부터 구하였으며, 변위들은 고전적 고차전단변형이론의 변위장을 사용하였다. 이 과정을 통하여 얻어진 변형 에너지를 본 논문에서는 EHSDTM라고 명명하였으며, 이 이론을 통해 복합재 적층평판의 변위와 응력을 계산함에 있어서 HSDT와 비슷한 수준의 계산적 효율을 가지면서, 동시에 최소자승오차법에 따른 후처리 과정을 적용함으로써 변위와 응력의 두께방향 분포를 정확하게 예측할 수 있도록 개선하였다. 계산된 결과는 고전적 HSDT, 3차원 탄성해 등의 여러 결과들과 비교하여 검증하였다.

FRP 바닥판의 휨 해석모델 개발 (Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks)

  • 김영빈;이재홍
    • 한국공간구조학회논문집
    • /
    • 제5권3호
    • /
    • pp.65-74
    • /
    • 2005
  • 본 연구에서는 사각형 모듈의 인발성형된 복합재료 바닥판의 휨 거동에 대한 해석 모델을 개발하였다. FRP 바닥판의 해석 모델은 FSDT 평판 이론을 기반으로 임의 적층각을 지닌 FRP 바닥판의 처짐을 예측할 수 있었다. 수치적 예제에서는 네 변이 단순 지지된 등분포 하중을 받는 사각형 모듈의 FRP 바닥판을 2차원 평판 유한 요소해석을 적용하여 수행하였고, 해석 결과에 대해서는 바닥판 길이-높이의 비와 화이버 각도의 변화에 따른 효과에 대해 역점을 두고 다루었다. 연구 결과, 본 연구에서 제안한 해석 모델이 FRP 바닥판의 휨 거동을 해석하고 예측하는데 효과적이고 정확하다는 것이 입증되었다. 또한, FRP 바닥판의 높이가 높아질수록 plate 해석 이론에 있어서 일차전단변형이론(First order Shear Deformable laminated plate Theory : FSDT)이 아닌 고차전단변형(Higher order Shear Deformable plate Theory : HSDT)의 필요성에 대해 언급하였다.

  • PDF

Analysis of composite plates using various plate theories -Part 1: Formulation and analytical solutions

  • Bose, P.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.583-612
    • /
    • 1998
  • A unified third-order laminate plate theory that contains classical, first-order and third-order theories as special cases is presented. Analytical solutions using the Navier and L$\acute{e}$vy solution procedures are presented. The Navier solutions are limited to simply supported rectangular plates while the L$\acute{e}$vy solutions are restricted to rectangular plates with two parallel edges simply supported and other two edges having arbitrary combination of simply supported, clamped, and free boundary conditions. Numerical results of bending and vibration for a number of problems are discussed in the second part of the paper.