On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates

적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선

  • 김준식 (금오공과대학교 기계공학부) ;
  • 한 장우 (서울대학교 기계항공공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2010.09.02
  • Accepted : 2011.03.18
  • Published : 2011.06.30

Abstract

In this paper, an systematic approach is presented, in which the mixed variational theorem is employed to incorporate independent transverse shear stresses into a classical higher-order shear deformation theory(HSDT). The HSDT displacement field is taken to amplify the benefits of using a classical shear deformation theory such as simple and straightforward calculation and numerical efficiency. Those independent transverse shear stresses are taken from the fifth-order polynomial-based zig-zag theory where the fourth-order transverse shear strains can be obtained. The classical displacement field and independent transverse shear stresses are systematically blended via the mixed variational theorem. Resulting strain energy expressions are named as an enhanced higher-order shear deformation theory via mixed variational theorem(EHSDTM). The EHSDTM possess the same computational advantage as the classical HSDT while allowing for improved through-the-thickness stress and displacement variations via the post-processing procedure. Displacement and stress distributions obtained herein are compared to those of the classical HSDT, three-dimensional elasticity, and available data in literature.

본 논문에서는 고전적 고차전단변형이론(HSDT)을 이용한 복합재료 적층평판의 응력해석 개선기법을 소개한다. 횡방향 응력들에 대해서만 변분을 취하는 혼합변분이론(Mixed variational theorem)을 통하여 횡방향 전단 변형에너지를 개선하였다. 가정된 횡방향 전단응력은 면내 변위가 5차 다항식을 갖는 고차 지그재그 이론으로부터 구하였으며, 변위들은 고전적 고차전단변형이론의 변위장을 사용하였다. 이 과정을 통하여 얻어진 변형 에너지를 본 논문에서는 EHSDTM라고 명명하였으며, 이 이론을 통해 복합재 적층평판의 변위와 응력을 계산함에 있어서 HSDT와 비슷한 수준의 계산적 효율을 가지면서, 동시에 최소자승오차법에 따른 후처리 과정을 적용함으로써 변위와 응력의 두께방향 분포를 정확하게 예측할 수 있도록 개선하였다. 계산된 결과는 고전적 HSDT, 3차원 탄성해 등의 여러 결과들과 비교하여 검증하였다.

Keywords

References

  1. Cho, M., Parmerter, R.R. (1992) An Efficient Higher Order Plate Theory for Laminated Composites, Composite Structure, 20, pp.113-123. https://doi.org/10.1016/0263-8223(92)90067-M
  2. Cho, M., Parmerter, R.R. (1993) Efficient Higher Order Composite Plate Theory for General Lamination Configu Rations, AIAA Journal, 31, pp.1299- 1306. https://doi.org/10.2514/3.11767
  3. Di Sciuva, M. (1986) Bending, Vibration and Buckli ng of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model, Journal of Sound and Vibration, 105, pp.425-442. https://doi.org/10.1016/0022-460X(86)90169-0
  4. Kim, J.S. (2007) Free Vibration of Laminated and Sandwich Plates Using Enhanced Plate Theories, Journal of Sound and Vibration, 308, pp.268-286. https://doi.org/10.1016/j.jsv.2007.07.040
  5. Kim, J.S., Cho, M. (2006) Enhanced Modeling of Laminated and Sandwich Plates via Strain Energy Transformation, Composites Science and Technology, 66, pp.1575-1587. https://doi.org/10.1016/j.compscitech.2005.11.018
  6. Levinson, M. (1980) An Accurate Simple Theory of the Statics and Dynamics of Elastic Plates, Mechanics Res. Comm, 7, pp.343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  7. Lo, K.H., Christensen, R.M., Wu, E.M. (1977) A Higher-Order Theory of Plate Deformation, Part 2: Laminated Plates, ASME: Journal of Applied Mechanics, 44, pp.669-676. https://doi.org/10.1115/1.3424155
  8. Mindlin, R.D. (1951) Influence of Rotator Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates, ASME: Journal of Applied Mechanics, 18, pp.31-38.
  9. Murakami, H. (1986) Laminated Composite Plate Theory with Improved In-Plane Responses, ASME: Journal of Applied Mechanics, 53, pp.661-666. https://doi.org/10.1115/1.3171828
  10. Murthy, M.V.V. (1981) An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates, NASA Tech. Paper 1903.
  11. Pagano, N.J. (1969) Exact Solutions for Composite Laminates in Cylindrical Bending, J. Composite Materials, 3, pp.398-411. https://doi.org/10.1177/002199836900300304
  12. Reddy, J.N. (1984) A Simple Higher-Order Theory for Laminated Composite Plates, ASME: Journal of Applied Mechanics, 51, pp.745-752. https://doi.org/10.1115/1.3167719
  13. Reissner, E. (1945) The Effects of Transverse Shear Deformation on the Bending of Elastic Plates, ASME: Journal of Applied Mechanics, 12, pp.69- 77.
  14. Seide, P. (1980) An Improved Approximate Theory for the Bending of Laminated Plates, Mech. Today, 5, pp.451-465.