• Title/Summary/Keyword: Clamped Plates

Search Result 145, Processing Time 0.023 seconds

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

Efficient Meshless Method for Accurate Eigenvalue Analysis of Clamped Plates (고정단 평판의 고정밀도 고유치 해석을 위한 효율적인 무요소법 개발)

  • Kang, S. W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.653-659
    • /
    • 2015
  • A new formulation of the non-dimensional dynamic influence function method, which is a type of the meshless method, is introduced to extract highly accurate eigenvalues of clamped plates with arbitrary shape. Originally, the final system matrix equation of the method, which was introduced by the author in 1999, does not have a form of algebraic eigenvalue problem unlike FEM. As the result, the non-dimensional dynamic influence function method requires an inefficient process to extract eigenvalues. To overcome this weak point, a new approach for clamped plates is proposed in the paper and the validity and accuracy is shown in verification examples.

A Study on the Natural Frequency of Al Square Plates with a Brass Inclusion using Rule of Mixtures (혼합법칙을 이용한 황동 개재물이 있는 Al 정사각판의 고유진동수 해석)

  • Lee, Youn-Bok;Lee, Se-Hoon;Lee, Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.399-406
    • /
    • 2006
  • The natural frequencies of Al square plates with a brass inclusion were analyzed by the rule of mixtures. The rule of mixtures is the method to derive natural frequency mutiplying effective inplane wane speed and nondimensional frequency parameters. Numerical models were Al square plates with an inclusion with cantilever type, 2 clamped edge-2 free edge type, 3 clamped edge-1 free edge type and fully clamped edge type. In cantilever type plates, 2 clamped edge-2 free edge type plates and 3 clamped edge-1 free edge plates with an inclusion, good agreement within 10% obtained from rule of mixtures' results and numerical analysis results within inclusion area ratio 1/9. It was found that the natural frequencies of the cantilever type, 2 clamped edge-2 free edge type and 3 clamped edge-1 free edge type plates with an inclusion decrease as the size of inclusion increases when inclusion is located center of plates. And when the density of inclusion is less than the plates, natural frequency of plates with an inclusion increases as the size of inclusion increases.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates (임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법)

  • Kang, Sang-wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.

Analysis of Flexural Vibration of Rhombic Plates with Combinations Clamped and Free Boundary Conditions Including the Effect of Corner Stress Singularities (모서리 응력특이도의 영향을 포함한 고정 또는 자유 경계조건의 조합을 고려한 마름모꼴 평판의 휨 진동 해석)

  • 한봉구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of rhombic plates having all combinations of clamped and free edge conditions. The prime focus here is that the analysis explicitly considers the bending stress singularities that occur in the two opposite, clamped-free corners having obtuse angles of the rhombic plates. Accurate non-dimensional frequencies and normalized contours of the vibratory transverse displacement are presented for rhombic plates having a large enough obtuse angle of 165$^{\circ}$, so that a significant influence of clamped-free corner stress singularities may be understood.

  • PDF

Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions

  • Abdelhak, Zohra;Hadji, Lazreg;Daouadji, T. Hassaine;Adda Bedia, E.A.
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.267-291
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) sandwich plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present refined theory. The non-linear governing equations are solved for plates subjected to simply supported and clamped boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

Analysis of the Existing Analytical Solutions for Isotropic Rectangular Thin Elastic Plates with Three Edges Clamped and the Other Free (등방성 직사각형의 3변 고정 1변 자유 얇은 탄성판에 대한 기존 해석해의 분석)

  • Seo, Seung-Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.117-132
    • /
    • 2006
  • The existing analytical solutions for rectangular plates with three edges clamped and the other free are derived based on nondimensional differential equation and their characteristics are analyzed. Since Timoshenko and Woinowsky-Krieger's method (1959) can give solutions for the case limited to the aspect ratio of the plates less than one, this method are proved to be impractical for the bending moment calculation of the plates under consideration. Horii and Moto's method(1968) are modified by adding stabilizing terms to suppress overflow in the matrix computation, from which the series solution with maximum 150 terms can be obtained. By use of the series solution the convergence of computed bending moments is tested. The modified method can be shown to calculate the deflection properties for the plates with wide range of aspect ratios, but the computed x moment at the corner points formed by the free edge and the clamped edges can not satisfy the boundary condition and the cause of problem is discussed in detail.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

Free Vibration Analysis of 4 Edges Clamped, Isotropic Square Plates with 2 Collinear Circular Holes (2개의 원형구멍이 있는 4변고정, 등방성 정사각형 판의 자유진동해석)

  • 이영신;이윤복
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.283-295
    • /
    • 1994
  • This work presents the experimental and finite element analysis results for the free vibration of 4 edges clamped, isotropic square plates with 2 collinear circular holes. Natural frequencies of finite element analysis are obtained for the complete square plate, the square plates with a central circular hole and the square plates with 2 collinear circulare holes. And natural frequencies are experimentally measured for the complete square plate, the square plate with a central circular hole(d = 150 mm) and the square plates with 2 collinear circular holes. Agreement between experimental and FEM results is excellent. Mode shapes in special case are presented. The conclusions of the study are as follows. There is little variation of nondimensional frequency parameters for the first six mode when the aspect ratio of circular hole is less than 1/6 in the isotropic square plates with 2 collinear circular holes. And the first nondimensional frequency parameter doesn't vary as the aspect ratio of circular hole increase.

  • PDF