• 제목/요약/키워드: Circular tank

검색결과 140건 처리시간 0.02초

벽면근처에서 회전하는 원주의 마그너스 효과 (The Magnus Effect of a Rotating Circular Cylinder near a Plane Wall)

  • 노기덕;김광석
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.42-47
    • /
    • 2006
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D$(H/D=0.05\sim0.5)$ between cylinder and plane wall and the velocity ratios $\alpha(\alpha=0\sim{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

  • PDF

Numerical Study on Wave Run-up of a Circular Cylinder with Various Diffraction Parameters and Body Drafts

  • Jeong, Ho-Jin;Koo, Weoncheol;Kim, Sung-Jae
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.245-252
    • /
    • 2020
  • Wave run-up is an important phenomenon that should be considered in ocean structure design. In this study, the wave run-up of a surface-piercing circular cylinder was calculated in the time domain using the three-dimensional linear and fully nonlinear numerical wave tank (NWT) techniques. The NWT was based on the boundary element method and the mixed Eulerian and Lagrangian method. Stokes second-order waves were applied to evaluate the effect of the nonlinear waves on wave run-up, and an artificial damping zone was adopted to reduce the amount of reflected and re-reflected waves from the sidewall of the NWT. Parametric studies were conducted to determine the effect of wavelength, wave steepness, and the draft of the cylinder on the wave run-up of the cylinder. The maximum wave run-up value occurred at 0°, which was in front of the cylinder, and the minimum value occurred near the circumferential angle of 135°. As the diffraction parameter increased, the wave run-up increased up to 1.7 times the wave height. Furthermore, the wave run-up was 4% higher than the linear wave when the wave steepness was 1/35. In particular, the crest height of the wave run-up increased by 8%.

해상교량기초용 대형원형강관 가물막이의 동적 안정성 모니터링을 위한 실내모형실험 (Small-Scaled Laboratory Experiments for Dynamic Stability Monitoring of Large Circular Steel Pipe Cofferdam of Marine Bridge Foundation)

  • 박민철;이종섭;김동호;유정동
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.123-134
    • /
    • 2019
  • 본 연구의 목적은 충격에 의한 모형 원형강관의 동적 반응을 조사하는 것이며, 선박충돌에 의한 대형원형강관의 동적 안정성 모니터링을 위한 기초연구로써 수행되었다. 실내실험은 직경, 두께, 높이가 각각 30cm, 0.4cm, 90cm인 스테인레스 재질의 단본 모형 원형강관과 3개의 세그먼트를 볼트로 조립한 모형 원형강관으로 수행되었다. 각 세그먼트의 높이는 30cm이다. 대형원형강관이 해상에 설치된 것을 모사하기 위하여 모형 원형강관을 가로, 세로, 높이가 각각 1m인 토조에 설치하였으며, 흙의 높이는 23cm로 하였다. 선박 충돌을 모사하기 위하여 모형 원형강관을 해머로 타격하였으며, 토조 내의 수위를 25cm, 40cm, 55cm, 70cm로 변화시키면서 모형 원형강관의 동적 반응 특성을 비교하였다. 실험결과, 수위가 증가할수록 측정된 신호의 에너지가 감소하였으며, 단본의 모형 원형강관보다 볼트로 조립된 모형 원형강관이 더 큰 감소폭을 보였다. 주파수 특성의 경우, 단본 모형 원형강관에서 측정된 주파수 신호는 수위가 증가할수록 우세 주파수가 감소하는 경향을 보였다. 볼트로 조립된 모형 원형강관의 경우도 수위가 증가할수록 우세 주파수가 감소하였다. 하지만, 수위에 따른 우세 주파수의 감소폭이 상대적으로 작았으며, 수위가 상부 세그먼트에 접할 때 높을 때 급격한 감소를 보였다. 본 연구의 결과는 가속도계로 측정된 신호의 에너지와 주파수 변화 특성이 해상교량기초용 가물막이 대형원형강관의 동적 안정성 모니터링에 유용하게 활용될 수 있음을 보여준다.

Comparison of Hydrodynamic Coefficients obtained through Implementation of Diverse Methods in Square Tank

  • Kang, Seunghyun;Yoon, Hyeon Kyu
    • 한국항해항만학회지
    • /
    • 제38권1호
    • /
    • pp.11-18
    • /
    • 2014
  • To confirm whether the square tank at Changwon National University (CWNU) can be used for estimation of maneuverability, planar motion mechanism (PMM) test and circular motion (CM) test were performed for various conditions. PMM test can be implemented using an XY carriage and a yaw table in the square tank. However, sometimes test section is insufficient for PMM test owing to low length-breadth ratio of the tank. In addition, the speed of a towing carriage is also quite limited. Therefore, it would be useful if PMM test could be effectively performed diagonally, by establishing coupled control logic to drive three servomotors. In addition, Froude number dependency on the estimated hydrodynamic coefficients was checked. Furthermore, CM tests, which cannot be completed in a conventional linear towing tank, were performed, and its results were compared with the results of PMM test. The results of the PMM tests in the diagonal direction were consistent with the results of the test performed in the direction parallel to the sidewall. However, the results of the CM test were greater than those of the PMM test. This tendency was also observed in the results published at Ulsan University.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

동심원관내에서 초음파가진에 의한 제트유동의 난류증진에 관한 연구 (A Study on the Turbulence Enhancement of Jet Flow by the Ultrasonic Forcing in a Coaxial Circular Pipe)

  • 주은선;이영호;송민근;이상범;손승우
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.31-37
    • /
    • 2001
  • A study to obtain the enhancement of turbulence at low Reynolds number is carried out by adding ultrasonic force into the jet flow field of a coaxial circular pipe which can afford the sufficient data of flow characteristics with the shear flow and turbulence flow in spite of its simple shape. A coaxial circular flow field is made vertically in a large and transparent acryl tank. The time mean velocity vector, distribution, kinetic energy and turbulence intensity formed in the complex flow field of turbulence enhancement are investigated, observed and discussed at Reynolds number of 2,000, 3,000 and 5,000 by using PIV measurement, in results, the validity of ultrasonic to obtain the enhancement of turbulence is certified.

  • PDF

Circular Motion Test를 이용한 선박의 조종성능 추정에 관한 연구 (Prediction of Ship Maneuverability by Circular Motion Test)

  • 신현경;정재환;이호영
    • 대한조선학회논문집
    • /
    • 제46권3호
    • /
    • pp.259-267
    • /
    • 2009
  • Recently, ship maneuverability has been very important issue due to accidents of frequent occurrence at sea. IMO standards for ship maneuverability were applied from January 1, 2004. In this study, maneuverability model tests were considered through a 2m-class KVLCC1 in the Ocean Engineering Wide Tank at University of Ulsan(UOU). Circular Motion Test(CMT) was performed to obtain the maneuvering coefficients by using X-Y Carriage. The trajectories simulated using the coefficients are compared with those of PMM test and free running test.

Computation of the inviscid drift force caused by nonlinear waves on a submerged circular cylinder

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.201-207
    • /
    • 2011
  • In this paper, we focused on computing the higher-harmonic components of the transmitted wave passing over a submerged circular cylinder to show that it is causing a horizontal negative drift force. As numerical models, a circular cylinder held fixed under free surface in deep water is adopted. As the submergence of a circular cylinder decreases and the incident wavelength becomes longer, the higher-harmonic components of the transmitted wave starts to increase. An increase of the higher-harmonic components of the transmitted wave makes the horizontal drift force be negative. It is also found that the higher-harmonic amplitudes averaged over the transmitted wave region become larger with the increase of wave steepness and wavelength as well as the decrease of submergence depth.

해상풍력발전용 고정식 원형 하부구조물에 작용하는 파랑 및 조류 하중 해석을 위한 CFD 기법의 적용 (CFD Application to Evaluation of Wave and Current Loads on Fixed Cylindrical Substructure for Ocean Wind Turbine)

  • 박연석;진정수;김우전
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.7-14
    • /
    • 2011
  • Numerical simulations were performed for the evaluation of wave and current loads on a fixed cylindrical substructure model for an ocean wind turbine using the ANSYS-CFX package. The numerical wave tank was actualized by specifying the velocity at the inlet and applying momentum loss as a wave damper at the end of the wave tank. The Volume-Of-Fluid (VOF) scheme was adopted to capture the air-water interface. An accuracy validation of the numerical wave tank with a truncated vertical circular cylinder was accomplished by comparing the CFD results with Morison's formula, experimental results, and potential flow solutions using the higher-order boundary element method (HOBEM). A parametric study was carried out by alternately varying the length and amplitude of the wave. As a meaningful engineering application, in the present study, three kinds of conditions were considered, i.e., cases with current, waves, and a combination of current and progressive waves, passing through a cylindrical substructure model. It was found that the CFD results showed reasonable agreement with the results of the HOBEM and Morison's formula when only progressive waves were considered. However, when a current was included, CFD gave a smaller load than Morison's formula.

전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석 (Analysis on Interaction of Regular Waves and a Circular Column Structure)

  • 송성진;박선호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제20권2호
    • /
    • pp.63-75
    • /
    • 2017
  • 해양환경에서 파랑-구조물 상호작용의 정확한 예측은 극한 환경조건에 노출 된 고정식 및 부유식 해양구조물의 안전성과 설계비용 효율성에 있어서 중요하다. 본 연구에서는 규칙파 와 원형 기둥의 파랑-구조물 상호작용을 해석하였다. 3차원 이상유동(two-phase flow)을 해석하기 위해 오픈소스 전산유체역학 라이브러리인 OpenFOAM을 사용하였다. 수치파랑수조에서 파를 생성 및 흡수하기 위해 소스항을 이용한 relaxation method를 적용하였다. 수치기법을 검증하기 위해 심해조건에서 생성된 2차 stokes 파형은 이론적인 해와 비교하였다. 검증과정을 통해 파장과 진폭에 대한 길이 및 높이 방향의 격자크기를 정하였다. 원형 기둥에 작용하는 파랑 하중과 wave run-up을 계산하고 기존의 실험 데이터와 비교하였다.