DOI QR코드

DOI QR Code

Analysis on Interaction of Regular Waves and a Circular Column Structure

전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석

  • Song, Seongjin (Department of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Park, Sunho (Department of Ocean Engineering, Korea Maritime and Ocean University)
  • Received : 2016.12.13
  • Accepted : 2017.03.20
  • Published : 2017.05.25

Abstract

In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

해양환경에서 파랑-구조물 상호작용의 정확한 예측은 극한 환경조건에 노출 된 고정식 및 부유식 해양구조물의 안전성과 설계비용 효율성에 있어서 중요하다. 본 연구에서는 규칙파 와 원형 기둥의 파랑-구조물 상호작용을 해석하였다. 3차원 이상유동(two-phase flow)을 해석하기 위해 오픈소스 전산유체역학 라이브러리인 OpenFOAM을 사용하였다. 수치파랑수조에서 파를 생성 및 흡수하기 위해 소스항을 이용한 relaxation method를 적용하였다. 수치기법을 검증하기 위해 심해조건에서 생성된 2차 stokes 파형은 이론적인 해와 비교하였다. 검증과정을 통해 파장과 진폭에 대한 길이 및 높이 방향의 격자크기를 정하였다. 원형 기둥에 작용하는 파랑 하중과 wave run-up을 계산하고 기존의 실험 데이터와 비교하였다.

Keywords

References

  1. Afshar, M.A., 2010, "Numerical Wave Generation in Open- FOAM", Master's thesis, Chalmers University of Technology, Goteborg, sweden.
  2. Bockmann, A., Pakozdi, C., Kristiansen, T., Jang, H. and Kim, J., 2014, "An Experimental and Computational Development of a Benchmark Solution for the Validation of Numerical Wave Tanks", Proc. ASME 33rd Int. Conf. Ocean Offshore Arct. Eng, Am. Soc. Mech. Eng, San Francisco, California, USA, V002T08A092- V002T08A092.
  3. Bredmose, H. and Jacobsen, N.G., 2010, "Breaking wave impacts on offshore wind turbine foundations: focused wave groups and CFD", Proc. ASME 29th Int. Conf. Ocean Offshore Arct. Eng, Am. Soc. Mech. Eng, Shanghai, China, 397-404.
  4. Brown, S.A., Magar, V., Greaves, D.M. and Conley, D.C., 2014, "An evaluation of rans turbulence closure models for spilling breakers", Proc. 34th Int. Conf. Coastal Eng, Vol. 1, 1-5.
  5. Büchmann, B., Skourup, J. and Cheung, K.F., 1998, "Run-up on a structure due to second-order waves and a current in a numerical wave tank", Appl. Ocean Res, Vol. 20, No. 5, 297-308. https://doi.org/10.1016/S0141-1187(98)00022-4
  6. Cao, H., Zha, J. and Wan, D., 2011, "Numerical simulation of wave run-up around a vertical cylinder", Proc. ISOPE 21th Int. Offshore Polar Eng. Conf, Int. Soc. Offshore Polar Eng, Maui, Hawaii, USA.
  7. Chakrabarti, S.K., 1987, Hydrodynamics of offshore structures, WIT press, UK.
  8. Danmeier, D.G., Seah, R.K., Finnigan, T., Roddier, D., Aubault, A., Vache, M. and Imamura, J.T., 2008, "Validation of wave run-up calculation methods for a gravity based structure", Proc. ASME 27th Int. Conf. Offshore Mech. Arct. Eng, Am. Soc. Mech. Eng, Estoril, Portugal, 265-274.
  9. Higuera, P., Lara, J.L. and Losada, I.J., 2013a, "Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM$^(R)$", Coastal Eng, Vol. 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  10. Higuera, P., Lara, J.L. and Losada, I.J., 2013b, "Simulating coastal engineering processes with OpenFOAM$^(R)$", Coastal Eng, Vol. 71, 119-134. https://doi.org/10.1016/j.coastaleng.2012.06.002
  11. Issa, R.I., 1986, "Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting", J. Comput. Phys, Vol. 62, No. 1, 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
  12. Iwanowski, B., Lefranc, M. and Wemmenhove, R., 2009, "CFD simulation of wave run-up on a semi-submersible and comparison with experiment", Proc. ASME 28th Int. Conf. Ocean Offshore Arct. Eng, Am. Soc. Mech. Eng, Honolulu, Hawaii, USA, 19-29.
  13. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J., 2012, "A wave generation toolbox for the open-source CFD library: OpenFOAM", Int. J. Numer. Methods Fluids, Vol. 70, No. 9, 1073-1088. https://doi.org/10.1002/fld.2726
  14. Kriebel, D.L., 1992, "Nonlinear wave interaction with a vertical circular cylinder. Part II: Wave run-up", Ocean. Eng, Vol. 19, No. 1, 75-99. https://doi.org/10.1016/0029-8018(92)90048-9
  15. Kristiansen, T., Baarholm, R. and Stansberg, C.T., 2004, "Validation of second-order analysis in predicting diffracted wave elevation around a vertical circular cylinder", Proc. ISOPE 14th Int. Offshore Polar Eng. Conf, Int. Soc. Offshore Polar Eng, Toulon, France.
  16. Martin, A.J., Easson, W.J. and Bruce, T., 2001, "Runup on columns in steep, deep water regular waves", J. Waterw. Port Coastal Ocean Eng, Vol. 127, No. 1, 26-32. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:1(26)
  17. McCamy, R. and Fuchs, R., 1954, "Wave forces on piles: a diffraction theory", Tech. Memo No. 69, U.S. Army Corps of Engineers, Beach Erosion Board.
  18. Menter, F.R., 1993, "Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows", Proc. 24th Fluid Dyn. Conf, Orlando, Flo, USA.
  19. Morgan, G.C.J., Zang, J., Greaves, D., Heath, A., Whitlow, C. and Young, J., 2010, "Using the rasInterFoam CFD model for wave transformation and coastal modelling", Proc. 32nd Conf. Coastal Eng, Shanghai, China.
  20. Morris-Thomas, M.T. and Thiagarajan, K.P., 2004, "The run-up on a cylinder in progressive surface gravity waves: harmonic components", Appl. Ocean Res, Vol. 26, No. 3, 98-113. https://doi.org/10.1016/j.apor.2004.11.002
  21. Niedzwecki, J.M. and Duggal, A.S., 1992, "Wave runup and forces on cylinders in regular and random waves", J. Waterw. Port Coastal Ocean Eng, Vol. 118, No. 6, 615-634. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:6(615)
  22. Orszag, S.A., Yakhot, V., Flannery, W.S., Boysan, F., Choudhury, D., Maruzewski, J. and Patel, B., 1993, "Renormalization Group Modeling and Turbulence Simulations", Proc. Int. Conf. Near-Wall Turbulent Flows, Tempe, Arizona, Netherlands.
  23. Palomares, G.D., 2015, "CFD Simulations on a Partially Submerged Cylinder under Regular Waves Using OPENFOAM?", Master's thesis, University of Stavanger, Norway.
  24. Park, Y.S., Chen, Z.S. and Kim, W.J., 2011, "CFD application to evaluation of wave and current loads on fixed cylindrical substructure for ocean wind turbine", J. Ocean Eng. Technol, Vol. 25, No. 2, 7-14. https://doi.org/10.5574/KSOE.2011.25.2.007
  25. Patankar, S.V. and Spalding, D.B., 1972, "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", Int. J. Heat Mass Transfer, Vol. 15, No 10, 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  26. Paulsen, B.T. Bredmose, H. Bingham, H.B. and Jacobsen, N.G., 2014, "Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth", J. Fluid Mech, Vol. 755, 1- 34. https://doi.org/10.1017/jfm.2014.386
  27. Sadeghi, K., 2008, "Significant guidance for design and construction of marine and offshore structures", GAU J. Soc. Appl. Sci, Vol. 4, No. 7, 67-92.
  28. Seiffert, B., Hayatdavoodi, M. and Ertekin, R.C., 2014, "Experiments and computations of solitary-wave forces on a coastalbridge deck. Part I: flat plate", Coastal Eng, Vol. 88, 194-209. https://doi.org/10.1016/j.coastaleng.2014.01.005
  29. Shih, T.H., Zhu, J. and Lumley, J.L., 1996, "Calculation of wallbounded complex flows and free shear flows", Int. J. Numer. Methods Fluids, Vol. 23, No 11, 1133-1144. https://doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1133::AID-FLD456>3.0.CO;2-A
  30. Sun, L., Zang, J., Chen, L., Taylor, R.E. and Taylor, P.H., 2016, "Regular waves onto a truncated circular column: A comparison of experiments and simulations", Appl. Ocean Res, Vol. 59, 650-662. https://doi.org/10.1016/j.apor.2016.03.011
  31. Sumer, B.M. and Fredso, J., 2006, Hydrodynamics Around Cylindrical Structures, Revised edition. World Scientific, Vol. 26.
  32. Swan, C. and Sheikh, R., 2015, "The interaction between steep waves and a surface-piercing column", Philos. Trans. R. Soc. London, Ser. A, Vol. 373, No. 2033.
  33. Stansberg, C.T. and Kristiansen, T., 2005, "Non-linear scattering of steep surface waves around vertical columns", Appl. Ocean Res, Vol. 27, No. 2, 65-80. https://doi.org/10.1016/j.apor.2005.11.004
  34. VanLeer, B., 1979, "Towards the Ultimate Conservative Difference Scheme", J. Comput. Phys, Vol. 32, No. 1, 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  35. Weiss, J.M., Maruszewski, J.P. and Smith, W.A., 1999, "Implicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid", AIAA J, Vol. 37, No. 1, 29-36. https://doi.org/10.2514/2.689