• 제목/요약/키워드: Circle theorem

검색결과 24건 처리시간 0.024초

구면삼각법에 관한 소고 (On Spherical Trigonometry)

  • 고영미
    • 한국수학사학회지
    • /
    • 제36권2호
    • /
    • pp.21-34
    • /
    • 2023
  • Spherical trigonometry refers to the geometry related to spherical triangles. It has been an important tool for studying astronomy since ancient times. In trigonometry, concepts such as trigonometric functions naturally emerge from the relationship between arcs and chords of a circle. In this paper, we briefly examine the origin of spherical trigonometry. To introduce the basics of spherical trigonometry, we present fundamental and important theorems such as Menelaus's theorem, the law of sines and the law of cosines on a sphere, along with their proofs. Furthermore, we discuss the educational value and potential applications of spherical trigonometry.

초월수의 역사와 미해결 문제 (History of Transcendental numbers and Open Problems)

  • 박춘성;안수엽
    • 한국수학사학회지
    • /
    • 제23권3호
    • /
    • pp.57-73
    • /
    • 2010
  • 초월수의 연구는 2000년 이상 수학자들을 괴롭혀 왔던 고대 그리스의 기하학 문제의 하나인 원적문제가 불가능하다는 것을 보여줌으로써 수학사의 중요한 분야임을 입증하였다. Liouville은 1844년에 처음으로 구체적인 초월수의 예를 제시하였고, 칸토어는 1874년에 초월수의 존재성을 증명하였다. Louville 정리는 많은 초월수를 만들어 낼 뿐 아니라 초월수의 존재성을 증명하는데 이용할 수 있다. 1873년에 Hermite가 자연로그의 밑수 e가 초월수임을 보이고, 1882년에 Lindemann이 원주율 $\pi$가 초월수임 증명하였다. 1934년에 Gelfond와 Schneider는 각각 힐버트의 7번째 문제에 대한 서로 다른 완전한 해를 찾았다. 1966년에 Baker는 Gelfond-Schneider 정리의 일반화된 결과를 증명하였다. 이 연구의 목적은 초월수의 개념과 발달과정을 살피고, 미해결 문제를 제시하여 초월수의 연구가 촉진되도록 후학들에게 연구 동기를 부여하고자 한다.

ON A GENERALIZATION OF HIRZEBRUCH'S THEOREM TO BOTT TOWERS

  • Kim, Jin Hong
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.331-346
    • /
    • 2016
  • The primary aim of this paper is to generalize a theorem of Hirzebruch for the complex 2-dimensional Bott manifolds, usually called Hirzebruch surfaces, to more general Bott towers of height n. To do so, we first show that all complex vector bundles of rank 2 over a Bott manifold are classified by their total Chern classes. As a consequence, in this paper we show that two Bott manifolds $B_n({\alpha}_1,{\ldots},{\alpha}_{n-1},{\alpha}_n)$ and $B_n({\alpha}_1,{\ldots},{\alpha}_{n-1},{\alpha}_n^{\prime})$ are isomorphic to each other, as Bott towers if and only if both ${\alpha}_n{\equiv}{\alpha}_n^{\prime}$ mod 2 and ${\alpha}_n^2=({\alpha}_n^{\prime})^2$ hold in the cohomology ring of $B_{n-1}({\alpha}_1,{\ldots},{\alpha}_{n-1})$ over integer coefficients. This result will complete a circle of ideas initiated in [11] by Ishida. We also give some partial affirmative remarks toward the assertion that under certain condition our main result still holds to be true for two Bott manifolds just diffeomorphic, but not necessarily isomorphic, to each other.

ON THE NORM OF THE OPERATOR aI + bH ON Lp(ℝ)

  • Ding, Yong;Grafakos, Loukas;Zhu, Kai
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1209-1219
    • /
    • 2018
  • We provide a direct proof of the following theorem of Kalton, Hollenbeck, and Verbitsky [7]: let H be the Hilbert transform and let a, b be real constants. Then for 1 < p < ${\infty}$ the norm of the operator aI + bH from $L^p(\mathbb{R})$ to $L^p(\mathbb{R})$ is equal to $$\({\max_{x{\in}{\mathbb{R}}}}{\frac{{\mid}ax-b+(bx+a){\tan}{\frac{\pi}{2p}}{\mid}^p+{\mid}ax-b-(bx+a){\tan}{\frac{\pi}{2p}}{\mid}^p}{{\mid}x+{\tan}{\frac{\pi}{2p}}{\mid}^p+{\mid}x-{\tan}{\frac{\pi}{2p}}{\mid}^p}}\)^{\frac{1}{p}}$$. Our proof avoids passing through the analogous result for the conjugate function on the circle, as in [7], and is given directly on the line. We also provide new approximate extremals for aI + bH in the case p > 2.

이동로봇의 장애물 회피를 위한 복소 포텐셜 항법의 개선 (Enhancement of Complex Potential Navigation Method for Obstacle Avoidance of Mobile Robot)

  • 김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.385-389
    • /
    • 2009
  • This paper deals with the enhancement of the complex potential navigation for wheeled mobile robots. The circle theorem from complex function theory is used to avoid an obstacle, and the enhancement to avoid multiple obstacles is proposed. The limit cycle navigation can be combined for robot to kick the ball to the intentioned direction. Avoiding step and superposing twin vortices can be applied to adjust the direction of robot's trajectory. The proposed method is verified through a set of simulation works, and the feasibilities for the enhancement of complex potential theory are successful.

복소 포텐셜을 이용한 로봇 축구용 다개체 로봇의 경로 계획 (Trajectory Planning of Multi Agent Robots for Robot Soccer Using Complex Potential)

  • 이경희;김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper deals with the trajectory planning of multi agent robots using complex potential theory for robot soccer. The complex potential theory is introduced, then the circle theorem is used to avoid obstacles, and the vortex pair is used to make precise kicking direction of robot. Various situations of robot soccer are simulated and the effect of vortex strength and the speed of robots are discussed and the better way to avoid obstacles and to kick the precise direction is found. The feasibilities of complex potential theory to apply for the multi agent robots are successful.

AVERAGE SHADOWING PROPERTIES ON COMPACT METRIC SPACES

  • Park Jong-Jin;Zhang Yong
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.355-361
    • /
    • 2006
  • We prove that if a continuous surjective map f on a compact metric space X has the average shadowing property, then every point x is chain recurrent. We also show that if a homeomorphism f has more than two fixed points on $S^1$, then f does not satisfy the average shadowing property. Moreover, we construct a homeomorphism on a circle which satisfies the shadowing property but not the average shadowing property. This shows that the converse of the theorem 1.1 in [6] is not true.

MINIMAL AND CONSTANT MEAN CURVATURE SURFACES IN 𝕊3 FOLIATED BY CIRCLES

  • Park, Sung-Ho
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1539-1550
    • /
    • 2019
  • We classify minimal surfaces in ${\mathbb{S}}^3$ which are foliated by circles and ruled constant mean curvature (cmc) surfaces in ${\mathbb{S}}^3$. First we show that minimal surfaces in ${\mathbb{S}}^3$ which are foliated by circles are either ruled (that is, foliated by geodesics) or rotationally symmetric (that is, invariant under an isometric ${\mathbb{S}}^1$-action which fixes a geodesic). Secondly, we show that, locally, there is only one ruled cmc surface in ${\mathbb{S}}^3$ up to isometry for each nonnegative mean curvature. We give a parametrization of the ruled cmc surface in ${\mathbb{S}}^3$(cf. Theorem 3).

IMPROVEMENT AND GENERALIZATION OF A THEOREM OF T. J. RIVLIN

  • Pritika, Mahajan;Devi, Khangembam Babina;Reingachan, N.;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권3호
    • /
    • pp.691-700
    • /
    • 2022
  • Let p(z) be a polynomial of degree n having no zero inside the unit circle. Then for 0 < r ≤ 1, the well-known inequality due to Rivlin [Amer. Math. Monthly., 67 (1960) 251-253] is $$\max\limits_{{\mid}z{\mid}=r}{\mid}p(z){\mid}{\geq}{\(\frac{r+1}{2}\)^n}\max\limits_{{\mid}z{\mid}=1}{\mid}p(z){\mid}$$. In this paper, we generalize as well as sharpen the above inequality. Also our results not only generalize, but also sharpen some known results proved recently.

지중 매설관 주변의 지하수흐름에 대한 이론적 고찰 (A Theoretical Study on the Ground Water Flow Adjacent to Buried Pipe)

  • 이승현;한진태
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1439-1443
    • /
    • 2011
  • 본 연구에서는 지중 매설관 주변의 지하수 흐름을 이론적으로 규명해 보았다. 지하수 흐름에 있어서는 비압축, 비회전 흐름을 고려하였다. 지하수 흐름 해석시 복소 포텐셜을 이용하여 흐름을 정의하였는데 지중 매설관이 없는 경우의 균등흐름을 먼저 고려하였고 원 정리에 의해 지중 매설관의 영향을 기존의 균등흐름에 추가하였다. 복소 포텐셜의 선형성에 근거하여 두 개의 흐름을 중첩시킬 수 있으나 이때 특이점의 위치를 고려하여 적절한 복소 포텐셜을 적용함으로써 추가적인 특이점의 이미지를 삽입하지 않도록 하는 효율적인 해석이 필요하다. 최종적으로는 순환을 동반하는 지중 매설관 주변의 흐름을 복소 포텐셜 중첩을 통해 살펴보았고 그 경우 흐름에 의해 지중 매설관에 작용하는 작용력을 유도해 보았다.