고객관계관리(customer relationship management: 이하 CRM)는 고객에 대한 정보를 수집하고 수집된 정보를 효과적으로 활용하여 신규고객획득, 우수고객 유지, 고객가치 증진, 잠재고객 활성화, 평생 고객화의 순환을 통하여 고객을 적극적으로 관리하고 유지하며 고객의 가치를 극대화시키기 위한 기업 마케팅 전략의 일환이다. 특히 경쟁 환경이 급변하고 치열해 짐에 따라 기업의 수익 극대화를 위한 고객가치 증대 및 고객과의 관계 형성을 위한 CRM활동 중 고객의 이탈방지를 통한 유지관리의 중요성이 점차 커지고 있으며, 이러한 움직임은 고객 세분화를 통한 이탈고객 관리분석으로 주로 금융시장에서 다루어져왔다. 한편, 금융시장뿐만 아니라 모든 사업 분야에서 고객 유지 및 이탈방지를 위한 분석의 필요성은 높아지고 있다. 그 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리하여 고객이탈을 막는 것이 고객관리에서 점차 그 중요성을 더하기 때문이다. 그러나 아직까지 필요성만 대두될 뿐 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 이탈고객에 대한 체계적인 연구가 진행되지 않았다는데 한계점이 있다. 이에 본 연구에서는 TV 홈쇼핑사의 실제 고객자료를 통하여 고객의 유지 및 이탈방지를 위한 CRM전개방안, 이탈고객과 유지고객간의 인구통계적 속성 및 거래 행동의 특성 차이를 분석, 이탈에 미치는 영향력이 높은 변수를 밝혀내고 이탈고객예측 모형을 통하여 개별고객의 이탈확률을 예측하고자 했다. 더 나아가 실증 분석 결과를 바탕으로 이탈예측고객을 대상으로 고객 이탈을 방지하고 거래유지 및 활성화를 위한 CRM전개 방안을 도출, 이를 바탕으로 TV 홈쇼핑사가 수립해야할 마케팅 전략을 제시한다.
Qingche He;Liang-ming Pan;Luteng Zhang;Wangtao Xu;Meiyue Yan
Nuclear Engineering and Technology
/
제55권11호
/
pp.3973-3982
/
2023
As for two-phase flow in rectangular channels, the flow regimes especially like churn-turbulent and annular flow are significant for the physical problem like Countercurrent Flow Limitation (CCFL). In this study, the rectangular channels with cross-sections of 4 × 66 mm, 6 × 66 mm, 8 × 66 mm are adopted to investigate the flow regimes of air-water vertical upward two phase flow under adiabatic condition. The gas and liquid superficial velocities are 0 ≤ jg ≤ 20m/s and 0.25 ≤ jf ≤ 3m/s respectively which covering bubbly to annular flow. The flow regimes are identified by random forest algorithm and the flow regime maps are obtained. As the results, the transitional void fraction from slug to churn turbulent flow fluctuate from 0.47 to 0.58 which is significantly affected by the dimensional size of channel and flow rate. Besides, the void fraction at transitional points from churn-turbulent (slug) to annular flow are 0.66-0.67, which are independent with the gap size. Furthermore, a new criteria of slug to churn-turbulent flow is established in this study. In addition, by introducing the interfacial force model, the criteria of churn-turbulent (slug) flow to annular flow is verified.
Massive multiplayer online role playing game (MMORPG)은 국내 게임에서 큰 비중을 차지하는 게임 장르이다. MMORPG에서 유저 이탈 예측은 중요한 과제 중 하나이다. 인게임 결제가 수익 비중이 높기에 유저 잔존율이 서비스 수명 및 수익과 깊이 연관되기 때문이다. 만약, 특정 유저의 이탈을 사전에 예측할 수 있다면 프로모션을 통해 해당 유저의 잔존을 유도할 수 있을 것이다. 따라서, 이탈 예측 문제에서는 예측의 정확도도 중요하지만 이탈의 징후를 얼마나 빠르게 파악할 수 있는지 또한 중요하다. 본 논문에서는 이탈 징후를 조기에 탐지하기 위하여, 유저별 잔존 확률을 일별로 예측하고 이 예측된 확률 값들을 활용하여 유저 이탈 징후를 조기에 파악하는 방법을 제안한다. 이를 위해, 국내 게임사의 유저 로그 데이터로 여러 모형을 학습하고 유저별 잔존 확률을 구하여 잔존 확률의 변화 패턴에 대한 분석을 통해 이탈 가능성이 높은 유저를 조기에 감지할 수 있는 경험적 규칙을 보인다. 최종적으로, 성능 평가 결과를 통해 기존에 접속일을 기반으로 한 규칙보다 제시한 규칙을 이용할 시 이탈 유저를 조기에 감지할 수 있음을 확인한다. 추가적으로, 유저가 이탈하기 전 시점에 게임 접속 중 유저 이탈을 예측하는 방법과 유저의 게임 스타일에 따른 프로모션 방안을 제시한다.
Nowadays data-based decision making is emerging as the center of the business environment paradigm, but many companies do not have data-driven decision-making systems. It has also been studied that using an expert's intuition in decision making can be more efficient in terms of speed and cost, compared to analytical decision making. The goal of this study is to analyze customer churn factors using a group of experts within a financial company from the viewpoint of decision-making efficiency. We applied a debit card 'A', product of the National Credit Union Federation of Korea. The churn factors of all the financial expert groups were examined. Also. the difference in each group (management support, card recruitment, customer service group) was analyzed. We expect that this study will be helpful in the practical aspects of managers whose environments is lack data-oriented infrastructure and culture.
대규모 다중 사용자 온라인 롤플레잉 게임 유저들은 시나리오를 따라 주어진 임무들을 수행하며 최고 레벨을 향해 캐릭터를 성장시킨다. 최고 레벨 유저를 보유하는 것이 온라인 게임의 성공적 운영에 중요함에도 불구하고 이들에 대한 연구는 크게 이루어지지 않았다. 이 연구에서는 5만여명 유저들에 의해 기록된 약 6천만 건의 게임 내 로그 데이터 분석을 통해 유저들이 최고 레벨에 도달하는 과정과 그 이후 게임 이탈 현상을 분석하며, 최고 레벨 유저의 이탈에 영향을 미치는 요인을 이해하고자 한다. 분석 결과, 최고 레벨 이전의 행동 패턴을 이용해 최고 레벨 유저의 이탈을 예측할 수 있으며, 최고 레벨 이전에 사회적으로 활발하고 많은 사람들과 대화하는 게이머가 덜 떠난다는 것을 발견하였다(p<0.05). 이 연구는 유저간 소통 패턴이 최고 레벨에 도달한 유저들의 지속적인 사용에 주요한 요인임을 확인하며, 엘리트 유저의 지속적인 게임 이용을 유도하는 실무적 시사점을 제공한다.
기존 연구들은 주로 사용자의 게임 참여 동기나 사회적 욕구에 따른 이탈 요인을 연구하였다. 하지만, 기존 연구들은 게임 참여 동기 관점에서 집중하다 보니, 사용자 불만 사항 개선에 따른 사용자 이탈에 관한 분석은 비교적 적게 이루어져왔다. 게임에 대한 사용자 불만 사항과 그에 따른 게임 품질 개선은 사용자가 게임에 참여하는 요인 중 하나이다. 따라서, 본 연구는 사용자 불만 요인이 사용자 이탈에 미치는 영향을 실증적으로 분석하여 그 관계를 살펴보고자 한다. 본 연구는 최근 유행했던 "PUBG - 배틀그라운드 게임"을 분석하여 제품 품질에 대한 불만 사항 피드백이 얼마나 사용자 이탈에 영향을 주는지 실증적으로 분석 한다. 텍스트 마이닝(Text Mining) 분석을 통해, 사용자들의 품질에 대한 불만요인을 도출하였고, 콕스모델(Cox Model)을 통해 불만 요인에 따른 사용자의 이탈률을 추정하였다. 또한 준실험설계 방법을 통해 실제 불만사항 개선 패치에 따라 사용자 수가 어떻게 변화하는지 살펴봄으로 본 연구 결과를 검증하였다. 분석 결과, 불만 사항 중 게임의 재미와 관련된 요인들이 사용자 이탈에 가장 큰 영향을 주었고, 반면 게임 사용 편의성과 관련된 불만 사항들은 비교적 사용자 이탈에 적은 영향을 준다는 것을 실증적으로 보였다. 본 연구결과에 따르면, 게임 불만 요인 개선에 따라 사용자들의 이탈 정도가 달라질 수 있으며, 이에 따라 게임 사용자 관리를 할 수 있다는 것을 밝혀냈다. 본 연구는 게임 개발 및 운영사 입장에서 사용자들의 불만 사항 개선에 대한 우선 순위를 제공해 줌으로서 실증적인 공헌을 제시한다.
산업 분야를 막론하고 머신러닝의 관심이 매우 높아지고 있으나, 머신러닝이 지닌 설명 불가능성은 여전히 문제로 남아있어 적극적인 업무 적용에 어려움이 있다. 본고에서는 증권사 금융 고객을 대상으로 이탈예측 모델 개발 사례를 소개하고 SHAP Value 기법을 사용하여 설명 가능한 머신러닝 모델 개발 시도와 해석 가능성 도출에 대한 연구 결과를 소개한다. 총 6가지 고객이탈 모델을 비교 분석하였으며, SHAP Value와 고객의 자산 변화에 따른 유형 분류 및 데이터 분석을 통해 고객 이탈 원인을 추론한다. 본 연구 결과를 토대로, 향후 마케팅 담당자의 실제 고객 마케팅 수행에 있어 원인 추론이 가능한 이탈 예측 결괏값을 사용하고 고객별 마케팅 여부를 점검하는 등의 종합적 판단 지표로 활용할 수 있을 것으로 판단된다.
Retention of possible churning customer is one of the most important issues in customer relationship management, so companies try to predict churn customers using their large-scale high-dimensional data. This study focuses on dealing with large data sets by reducing the dimensionality. By using six different dimension reduction methods-Principal Component Analysis (PCA), factor analysis (FA), locally linear embedding (LLE), local tangent space alignment (LTSA), locally preserving projections (LPP), and deep auto-encoder-our experiments apply each dimension reduction method to the training data, build a classification model using the mapped data and then measure the performance using hit rate to compare the dimension reduction methods. In the result, PCA shows good performance despite its simplicity, and the deep auto-encoder gives the best overall performance. These results can be explained by the characteristics of the churn prediction data that is highly correlated and overlapped over the classes. We also proposed a simple out-of-sample extension method for the nonlinear dimension reduction methods, LLE and LTSA, utilizing the characteristic of the data.
Epidemic protocols have two fundamental assumptions. One is the availability of a mechanism that provides each node with a set of log(N) (fanout) nodes to gossip with at each cycle. The other is that the network size N is known to all member nodes. While it may be trivial to support these assumptions in small systems, it is a challenge to realize them in large open dynamic systems, such as peer-to-peer (P2P) systems. Technically, since the most fundamental parameter of epidemic protocols is log(N), without knowing the system size, the protocols will be limited. Further, since the network churn, frequently observed in P2P systems, causes rapid membership changes, providing a different set of log(N) at each cycle is a difficult problem. In order to support the assumptions, the fanout nodes should be selected randomly and uniformly from the entire membership. This paper investigates one possible solution which addresses both problems; providing at each cycle a different set of log(N) nodes selected randomly and uniformly from the entire network under churn, and estimating the dynamic network size in the number of nodes. This solution improves the previously developed distributed algorithm called Shuffle to deal with churn, and utilizes the Shuffle infrastructure to estimate the dynamic network size. The effectiveness of the proposed solution is evaluated by simulation. According to the simulation results, the proposed algorithms successfully handle network churn in providing random log(N0 fanout nodes, and practically and accurately estimate the network size. Overall, this work provides insights in designing epidemic protocols for large scale open dynamic systems, where the protocols behave autonomically.
보안 분야에서 악성코드나 이상 행위를 탐지하기 위한 보안 로그의 분석은 매우 중요하며, 악성코드를 탐지하기 위한 이미지 시각화 분석 기술은 많은 선행 연구를 통해 논의되어져 왔다. 이러한 분석 기술은 온라인 게임에도 적용될 수 있다. 최근 온라인 게임에서 악성코드나 게임 봇, 매크로 도구 등의 악용 사례가 증가하므로 인해 정상적으로 게임을 이용하려는 유저들의 이탈이 늘어나는 추세로 서비스의 운영자가 제시간에 필요한 조치를 하지 않을 경우 게임 산업 자체가 무너질 수 있다. 본 논문에서는 분석의 효율성을 향상시키기 위해 로그 파일을 PNG 이미지로 변환하는 방식을 사용한 새로운 이탈 예측 모델을 제안한다. 제안하는 모델은 이미지 변환을 통해 기존의 로그 크기에 비해 52,849배 경량화된 분석이 가능하며 특성 분석이 별도로 필요하지 않은 방식으로 분석에 소요되는 시간을 단축시켰다. 모델의 유효성 검증을 위해서 엔씨소프트의 블레이드 앤 소울 게임의 실제 데이터를 사용하였고, 분석 결과 97%의 높은 정확도로 잠재적인 이탈 유저를 예측할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.