DOI QR코드

DOI QR Code

A Securities Company's Customer Churn Prediction Model and Causal Inference with SHAP Value

증권 금융 상품 거래 고객의 이탈 예측 및 원인 추론

  • Received : 2020.11.26
  • Accepted : 2020.12.31
  • Published : 2020.12.31

Abstract

The interest in machine learning is growing in all industries, but it is difficult to apply it to real-world tasks because of inexplicability. This paper introduces a case of developing a financial customer churn prediction model for a securities company, and introduces the research results on an attempt to develop a machine learning model that can be explained using the SHAP Value methodology and derivation of interpretability. In this study, a total of six customer churn models are compared and analyzed, and the cause of customer churn is inferred through the classification and data analysis of SHAP Value and the type of customer asset change. Based on the results of this study, it would be possible to use it as a basis for comprehensive judgment, such as using the Value of the deviation prediction result that can infer the cause of the marketing manager's actual customer marketing in the future and establishing a target marketing strategy for each customer.

산업 분야를 막론하고 머신러닝의 관심이 매우 높아지고 있으나, 머신러닝이 지닌 설명 불가능성은 여전히 문제로 남아있어 적극적인 업무 적용에 어려움이 있다. 본고에서는 증권사 금융 고객을 대상으로 이탈예측 모델 개발 사례를 소개하고 SHAP Value 기법을 사용하여 설명 가능한 머신러닝 모델 개발 시도와 해석 가능성 도출에 대한 연구 결과를 소개한다. 총 6가지 고객이탈 모델을 비교 분석하였으며, SHAP Value와 고객의 자산 변화에 따른 유형 분류 및 데이터 분석을 통해 고객 이탈 원인을 추론한다. 본 연구 결과를 토대로, 향후 마케팅 담당자의 실제 고객 마케팅 수행에 있어 원인 추론이 가능한 이탈 예측 결괏값을 사용하고 고객별 마케팅 여부를 점검하는 등의 종합적 판단 지표로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. 김경태, & 이지형. (2018). 딥 러닝과 Boosted Decision Tree 를 활용한 고객 이탈 예측 모델. 한국지능시스템학회 논문지, 28(1), 7-12.
  2. 김은미, & 박지영. (2019). 온라인 P2P 환경에서 딥러닝을 적용한 다분류 기반 개인신용등급 예측모델. 인터넷전자상거래연구, 19(4), 43-57.
  3. 김승수, & 김종우. (2018). 비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로. 지능정보연구, 24(2), 221-241. https://doi.org/10.13088/JIIS.2018.24.2.221
  4. 서민교. (2013). 국내 금융기관의 빅 데이터 (Big Data) 활용 사례에 관한 연구. 전자무역연구, 11(4), 115-134. https://doi.org/10.17255/etr.11.4.201311.115
  5. 이동규, & 신민수. (2018). 카드 산업에서의 고객휴면 예측. 한국 IT 서비스학회 학술대회 논문집, 2018, 404-407.
  6. 이세희, & 이지형. (2016). RNN 을 이용한 고객이탈 예측 및 분석. 한국컴퓨터정보학회 학술발표논문집, 24(2), 45-48.
  7. 장민석, & 김형중. (2018). 빅데이터를 활용한 은행권 고객 세분화 기법 연구. 한국디지털콘텐츠학회 논문지, 19(1), 85-91.
  8. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052
  9. Ahn, Y., Kim, D., & Lee, D. J. (2019). Customer attrition analysis in the securities industry: a large-scale field study in Korea. International Journal of Bank Marketing.
  10. Binder, A., Montavon, G., Lapuschkin, S., Muller, K. R., & Samek, W. (2016, September). Layer-wise relevance propagation for neural networks with local renormalization layers. In International Conference on Artificial Neural Networks (pp. 63-71). Springer, Cham
  11. Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2).
  12. Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature machine intelligence, 2(1), 2522-5839.
  13. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in neural information processing systems (pp. 4765-4774).
  14. Montavon, G., Samek, W., & Muller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15. https://doi.org/10.1016/j.dsp.2017.10.011
  15. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
  16. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  17. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).
  18. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409. 0473.
  19. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
  20. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
  21. Tsai, C. F., & Lu, Y. H. (2009). Customer churn prediction by hybrid neural networks. Expert Systems with Applications, 36(10), 12547-12553. https://doi.org/10.1016/j.eswa.2009.05.032
  22. He, B., Shi, Y., Wan, Q., & Zhao, X. (2014). Prediction of customer attrition of commercial banks based on SVM model. Procedia Computer Science, 31, 423-430. https://doi.org/10.1016/j.procs.2014.05.286
  23. Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7, 60134-60149. https://doi.org/10.1109/ACCESS.2019.2914999
  24. Li, Y., & Xia, G. E. (2010, November). The explanation of support vector machine in customer churn prediction. In 2010 International Conference on E-Product E-Service and E-Entertainment (pp. 1-4). IEEE.
  25. Pamina, J., Raja, B., SathyaBama, S., Sruthi, M. S., & VJ, A. (2019). An effective classifier for predicting churn in telecommunication. Jour of Adv Research in Dynamical & Control Systems, 11.
  26. DUMITRACHE, A., NASTU, A. A., & STANCU, S. Churn Prediction in Telecommunication Industry: Model Interpretability.