References
- 김경태, & 이지형. (2018). 딥 러닝과 Boosted Decision Tree 를 활용한 고객 이탈 예측 모델. 한국지능시스템학회 논문지, 28(1), 7-12.
- 김은미, & 박지영. (2019). 온라인 P2P 환경에서 딥러닝을 적용한 다분류 기반 개인신용등급 예측모델. 인터넷전자상거래연구, 19(4), 43-57.
- 김승수, & 김종우. (2018). 비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로. 지능정보연구, 24(2), 221-241. https://doi.org/10.13088/JIIS.2018.24.2.221
- 서민교. (2013). 국내 금융기관의 빅 데이터 (Big Data) 활용 사례에 관한 연구. 전자무역연구, 11(4), 115-134. https://doi.org/10.17255/etr.11.4.201311.115
- 이동규, & 신민수. (2018). 카드 산업에서의 고객휴면 예측. 한국 IT 서비스학회 학술대회 논문집, 2018, 404-407.
- 이세희, & 이지형. (2016). RNN 을 이용한 고객이탈 예측 및 분석. 한국컴퓨터정보학회 학술발표논문집, 24(2), 45-48.
- 장민석, & 김형중. (2018). 빅데이터를 활용한 은행권 고객 세분화 기법 연구. 한국디지털콘텐츠학회 논문지, 19(1), 85-91.
- Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052
- Ahn, Y., Kim, D., & Lee, D. J. (2019). Customer attrition analysis in the securities industry: a large-scale field study in Korea. International Journal of Bank Marketing.
- Binder, A., Montavon, G., Lapuschkin, S., Muller, K. R., & Samek, W. (2016, September). Layer-wise relevance propagation for neural networks with local renormalization layers. In International Conference on Artificial Neural Networks (pp. 63-71). Springer, Cham
- Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2).
- Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature machine intelligence, 2(1), 2522-5839.
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in neural information processing systems (pp. 4765-4774).
- Montavon, G., Samek, W., & Muller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15. https://doi.org/10.1016/j.dsp.2017.10.011
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).
- Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409. 0473.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- Tsai, C. F., & Lu, Y. H. (2009). Customer churn prediction by hybrid neural networks. Expert Systems with Applications, 36(10), 12547-12553. https://doi.org/10.1016/j.eswa.2009.05.032
- He, B., Shi, Y., Wan, Q., & Zhao, X. (2014). Prediction of customer attrition of commercial banks based on SVM model. Procedia Computer Science, 31, 423-430. https://doi.org/10.1016/j.procs.2014.05.286
- Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7, 60134-60149. https://doi.org/10.1109/ACCESS.2019.2914999
- Li, Y., & Xia, G. E. (2010, November). The explanation of support vector machine in customer churn prediction. In 2010 International Conference on E-Product E-Service and E-Entertainment (pp. 1-4). IEEE.
- Pamina, J., Raja, B., SathyaBama, S., Sruthi, M. S., & VJ, A. (2019). An effective classifier for predicting churn in telecommunication. Jour of Adv Research in Dynamical & Control Systems, 11.
- DUMITRACHE, A., NASTU, A. A., & STANCU, S. Churn Prediction in Telecommunication Industry: Model Interpretability.