DOI QR코드

DOI QR Code

An Investigation of a Role of Affective factors in Users' Coping with Privacy Risk from Location-based Services

위치기반 서비스(Location-based Service)의 프라이버시 위험 대응에 있어 사용자 감정(Affect)의 역할

  • 박종화 (울산과학기술원 경영공학과) ;
  • 정윤혁 (고려대학교 미디어학부)
  • Received : 2020.11.19
  • Accepted : 2020.12.31
  • Published : 2020.12.31

Abstract

Despite empirical research that the response to human risk is significantly influenced affective factors, the role of affective factors has been unexplored in information privacy research. This study aims to explore the privacy behaviors of location-based service (LBS) users from an affective point of view. Specifically, the study explored the relationship between three types of privacy threats (collection, hacking, secondary use), two affects (worry, anger), and a coping behavior (continuous use intentions). The structured survey was conducted with 552 users. In order to analyze the effect of the combination of perception of particular privacy threats and particular affects on the intention of continuous use, association rules, one of the data mining techniques, was employed. As a result, there was a difference in the intention to use according to the combination of the perception of risk and affect responses, and the most significant influence on the intention is when the second use of personal information was combined with anger. This study has significant theoretical contribution in that it includes affective factors in the research of information privacy users, complementing the biases of existing cognition-oriented approaches and providing a comprehensive understanding of privacy response behavior.

위험에 대한 인간의 반응은 인지적 요인뿐만 아니라 정서적 요인에도 유의미한 영향을 받는다는 경험적 연구에도 불구하고, 정보 프라이버시 연구에서는 감정적 요인의 역할이 제대로 규명되지 않고 있다. 본 연구는 정서적 관점에서 위치기반 서비스(Location-based service) 사용자의 프라이버시 위험에 대한 대응행위를 탐색하고자 한다. 구체적으로, 본 연구는 세 가지 유형의 개인정보 위협(수집, 해킹, 2차 사용), 두 가지 감정적 반응(걱정, 분노) 및 대응행위(지속적인 사용의도)의 관계를 탐색하였다. 이를 위해 위치기반서비스(Location-based service) 사용자 552 명에 대해 설문조사를 실시하였다. 특정 개인정보 위협에 대한 인식과 특정 감정적 반응의 결합이 지속적 사용의도에 미치는 영향을 분석하기 위해 데이터마이닝 기법 중 하나인 연관규칙(association rule)을 활용하여 분석을 진행하였다. 그 결과 위험에 대한 인식과 정서적 반응의 결합에 따라 사용의도에 차이가 나타났으며, 대체로 개인정보의 2차 사용에 대해 분노의 감정이 유발될 경우 사용의도가 가장 크게 감소하는 것으로 나타났다. 본 연구는 정보 프라이버시 사용자 연구에 감정적 요인을 포함함으로써, 기존의 인지적 접근방식 편향을 보완하고 프라이버시 대응행위에 대한 포괄적 이해를 제공한다는 점에서 학문적 의의가 있다.

Keywords

Acknowledgement

이 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A3A2099973).

References

  1. 이동만.장성희. 2014. "위치기반서비스에서 프라이버시 염려와 보호행동에 영향을 미치는 요인과 혁신성의 조절효과 검증." 인터넷전자상거래연구, 14(4), 1-22.
  2. 진병운.조영성.류근호. 2010. "RFM 기법과 연관성 규칙을 이용한 개인화된 전자상거래 추천시스템." 한국컴퓨터정보학회논문지, 15(12), 227-235. https://doi.org/10.9708/jksci.2010.15.12.227
  3. Anderson, C. L., & Agarwal, R. (2011). The digitization of healthcare: boundary risks, emotion, and consumer willingness to disclose personal health information. Information Systems Research, 22(3), 469-490. https://doi.org/10.1287/isre.1100.0335
  4. Agrawal, R., Imielinski, R. and Swami, A. (1993). Mining association rules between sets of items in large databases. Proceedings of the ACM SIGMOD Conference on Management of Data, 207-216.
  5. Beaudry, A., & Pinsonneault, A. (2010). The other side of acceptance: studying the direct and indirect effects of emotions on information technology use. MIS Quarterly, 689-710.
  6. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293-1295. https://doi.org/10.1126/science.275.5304.1293
  7. Belanger, F., & Crossler, R. E. (2011). Privacy in the digital age: a review of information privacy research in information systems. MIS Quarterly, 35(4), 1017-1042. https://doi.org/10.2307/41409971
  8. Bellman, S., Johnson, E. J., Kobrin, S. J., & Lohse, G. L. (2004). International differences in information privacy concerns: A global survey of consumers. The Information Society, 20(5), 313-324. https://doi.org/10.1080/01972240490507956
  9. Deffenbacher, J. L. (1999). Cognitive behavioral conceptualization and treatment of anger. Journal of Clinical Psychology, 55(3), 295-309. https://doi.org/10.1002/(SICI)1097-4679(199903)55:3<295::AID-JCLP3>3.0.CO;2-A
  10. Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61-80. https://doi.org/10.1287/isre.1060.0080
  11. Frijda, N. H., Kuipers, P., & Ter Schure, E. (1989). Relations among emotion, appraisal, and emotional action readiness. Journal of Personality and Social Psychology, 57(2), 212. https://doi.org/10.1037/0022-3514.57.2.212
  12. Gasper, K., & Clore, G. L. (1998). The persistent use of negative affect by anxious individuals to estimate risk. Journal of Personality and Social Psychology, 74(5), 1350-1363. https://doi.org/10.1037/0022-3514.74.5.1350
  13. Hong, W., & Thong, J. Y. (2013). Internet privacy concerns: An integrated conceptualization and four empirical studies. Mis Quarterly, 275-298.
  14. Hsu, C. L., & Lin, J. C. C. (2016). An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives. Computers in Human Behavior, 62, 516-527. https://doi.org/10.1016/j.chb.2016.04.023
  15. Jiang, Z., Heng, C. S., & Choi, B. C. (2013). Research note-privacy concerns and privacy-protective behavior in synchronous online social interactions. Information Systems Research, 24(3), 579-595. https://doi.org/10.1287/isre.1120.0441
  16. Jung, Y., & Park, J. (2018). An investigation of relationships among privacy concerns, affective responses, and coping behaviors in location-based services. International Journal of Information Management, 43, 15-24. https://doi.org/10.1016/j.ijinfomgt.2018.05.007
  17. Junglas, I. A., Johnson, N. A., & Spitzmuller, C. (2008). Personality traits and concern for privacy: an empirical study in the context of location-based services. European Journal of Information Systems, 17(4), 387-402. https://doi.org/10.1057/ejis.2008.29
  18. Krishen, A. S., Raschke, R. L., Close, A. G., & Kachroo, P. (2017). A power-responsibility equilibrium framework for fairness: Understanding consumers' implicit privacy concerns for location-based services. Journal of Business Research, 73, 20-29. https://doi.org/10.1016/j.jbusres.2016.12.002
  19. Kumar, N., Mohan, K., & Holowczak, R. (2008). Locking the door but leaving the computer vulnerable: Factors inhibiting home users' adoption of software firewalls. Decision Support Systems, 46(1), 254-264. https://doi.org/10.1016/j.dss.2008.06.010
  20. Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press.
  21. Lerner, J. S., & Keltner, D. (2001). Fear, anger, and risk. Journal of Personality and Social Psychology, 81(1), 146-159. https://doi.org/10.1037/0022-3514.81.1.146
  22. Li, H., Sarathy, R., & Xu, H. (2011). The role of affect and cognition on online consumers' decision to disclose personal information to unfamiliar online vendors. Decision Support Systems, 51(3), 434-445. https://doi.org/10.1016/j.dss.2011.01.017
  23. Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267-286. https://doi.org/10.1037/0033-2909.127.2.267
  24. Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336-355. https://doi.org/10.1287/isre.1040.0032
  25. Roseman, I. J., Wiest, C., & Swartz, T. S. (1994). Phenomenology, behaviors, and goals differentiate discrete emotions. Journal of Personality and Social Psychology, 67(2), 206. https://doi.org/10.1037/0022-3514.67.2.206
  26. Sheng, H., Nah, F. F. H., & Siau, K. (2008). An experimental study on ubiquitous commerce adoption: Impact of personalization and privacy concerns. Journal of the Association for Information Systems, 9(6), 344-376. https://doi.org/10.17705/1jais.00161
  27. Slovic, P., Layman, M., Kraus, N., Flynn, J., Chalmers, J., & Gesell, G. (1991). Perceived risk, stigma, and potential economic impacts of a high level nuclear waste repository in Nevada. Risk Analysis, 11(4), 683-696. https://doi.org/10.1111/j.1539-6924.1991.tb00658.x
  28. Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: measuring individuals' concerns about organizational practices. MIS Quarterly, 167-196.
  29. Son, J. Y., & Kim, S. S. (2008). Internet users' information privacy-protective responses: A taxonomy and a nomological model. MIS quarterly, 503-529.
  30. Van Slyke, C., Shim, J. T., Johnson, R., & Jiang, J. J. (2006). Concern for information privacy and online consumer purchasing. Journal of the Association for Information Systems, 7(6), 415-444. https://doi.org/10.17705/1jais.00092
  31. Xie, W., & Karan, K. (2019). Consumers' Privacy Concern and Privacy Protection on Social Network Sites in the Era of Big Data: Empirical Evidence from College Students. Journal of Interactive Advertising, 1-15.
  32. Xu, H., & Teo, H. H. (2004). Alleviating consumers' privacy concerns in location-based services: a psychological control perspective. ICIS 2004 Proceedings, 64.
  33. Yi, S., & Baumgartner, H. (2004). Coping with negative emotions in purchase related situations. Journal of Consumer Psychology, 14(3), 303-317. https://doi.org/10.1207/s15327663jcp1403_11
  34. Yu, J., Hu, P. J. H., & Cheng, T. H. (2015). Role of affect in self-disclosure on social network websites: A test of two competing models. Journal of Management Information Systems, 32(2), 239-277. https://doi.org/10.1080/07421222.2015.1063305
  35. Zhang, P. (2013). The affective response model: A theoretical framework of affective concepts and their relationships in the ICT context. MIS quarterly, 247-274.