DOI QR코드

DOI QR Code

A Priority Analysis of Card Customer Churn Factors Using AHP : Focusing on Management Support, Card Recruitment, Customer Service Personnel's Perspective

AHP를 이용한 카드고객 이탈 요인의 우선순위 분석 : 경영지원·카드모집·고객서비스 집단을 중심으로

  • 이정우 (NH농협금융지주 NH금융연구소) ;
  • 송영규 (신협중앙회 IT경영부문) ;
  • 한창희 (한양대학교 경영학부)
  • Received : 2021.06.24
  • Accepted : 2021.08.09
  • Published : 2021.08.31

Abstract

Nowadays data-based decision making is emerging as the center of the business environment paradigm, but many companies do not have data-driven decision-making systems. It has also been studied that using an expert's intuition in decision making can be more efficient in terms of speed and cost, compared to analytical decision making. The goal of this study is to analyze customer churn factors using a group of experts within a financial company from the viewpoint of decision-making efficiency. We applied a debit card 'A', product of the National Credit Union Federation of Korea. The churn factors of all the financial expert groups were examined. Also. the difference in each group (management support, card recruitment, customer service group) was analyzed. We expect that this study will be helpful in the practical aspects of managers whose environments is lack data-oriented infrastructure and culture.

Keywords

Acknowledgement

이 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A5C2A04083153).

References

  1. 고민석, 김재희, "블록체인 기반 대고객 뱅킹 서비스에 대한 우선순위 도출 : 지방은행의 사례를 중심으로", 한국IT서비스학회지, 제20권 제3호, 2021, 87-101. https://doi.org/10.9716/KITS.2021.20.3.087
  2. 김성희, 정병호, 김재경, "의사결정분석 및 응용", 서울, 영지문화사, 1999.
  3. 김승수, 김종우, "비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측", 지능정보연구, 제24권, 제2호, 2018, 221-241. https://doi.org/10.13088/JIIS.2018.24.2.221
  4. 김흥진, 조동혁, 안태호, "AHP 기법을 활용한 소프트웨어 제안평가요인의 상대적 중요도에 관한 연구 : 발주자와 수주자 비교를 중심으로", 한국IT서비스학회지, 제16권, 제1호, 2017, 41-53. https://doi.org/10.9716/KITS.2017.16.1.041
  5. 배행수, "고객 이탈 예측 데이터마이닝 기법 비교 연구", 연세대학교 석사학위 논문, 2006.
  6. 송재철, "금융 CRM전략을 위한 이탈고객 모형분석에 관한 연구 : 은행 요구불 예금을 중심으로", 연세대학교 석사학위 논문, 2006.
  7. 안재영, 이중정, 윤혜정, "한국 석재산업의 IT도입 및 활성화를 위한 탐색적 연구", 한국IT서비스학회지, 제17권, 제2호, 2018, 83-100. https://doi.org/10.9716/KITS.2018.17.2.083
  8. 이지영, "고객의 정적정보와 동적정보를 통합적으로 활용한 신용카드 고객 이탈 예측", 한양대학교 석사학위 논문, 2007.
  9. 조성호, "이탈 고객 재유치에 대한 탐색적 연구 : 신용카드 사례를 중심으로", 서울대학교 석사학위 논문, 2015.
  10. Avon, V., "Machine learning techniques for customer churn prediction in banking environments", Universita degli Studi di Padova, Thesis Paper, 2016.
  11. Ballings, M. and D.V. Poel, "Customer event history for churn prediction : how long is long enough?", Expert Systems with Applications, Vol.39, No.18, 2012, 13517-13522. https://doi.org/10.1016/j.eswa.2012.07.006
  12. Blattberg, R.C., B.D. Kim, and S.A. Neslin, "Database marketing : analyzing and managing customers", International Series on Quantitative Marketing, Springer, 2008.
  13. Buckinx, W. and D.V. Poel, "Customer base analysis : partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting", European Journal of Operational Research, Vol.164, No.1, 2005, 252-268. https://doi.org/10.1016/j.ejor.2003.12.010
  14. Coussement, K. and K.W. Bock, "Customer churn prediction in the online gambling industry : the beneficial effect of ensemble learning", Journal of Business Research, Vol.66, No.9, 2013, 1629-1636. https://doi.org/10.1016/j.jbusres.2012.12.008
  15. Coussement, K., S. Lessmann, and G. Verstraeten, "A comparative analysis of data preparation algorithms for customer churn prediction : a case study in the telecommunication industry", Decision Support Systems, Vol.95, 2017, 27-36. https://doi.org/10.1016/j.dss.2016.11.007
  16. Hadden, J., A. Tiwari, R. Roya, and D. Ruta, "Computer assisted customer churn management : state-of-the-art and future trends", Computers and Operations Research, Vol. 34, No.10, 2005, 2902-2917. https://doi.org/10.1016/j.cor.2005.11.007
  17. Hung, S., D. Yen, and H. Wang, "Applying data mining to telecom churn management", Expert Systems with Applications, Vol.31, No.3, 2006, 515-524. https://doi.org/10.1016/j.eswa.2005.09.080
  18. Kumar, D.A. and V. Ravi, "Predicting credit card customer churn in banks using data mining", International Journal of Data Analysis Techniques and Strategies, 2008, Vol.1, No.1, 4-28. https://doi.org/10.1504/IJDATS.2008.020020
  19. Marsh, J., "Managing Financial Services Marketing", Pitman Publishing, London, 1998.
  20. Mozer, M.C., R. Wolniewicz, D.B. Grimes, E. Johnson, and H. Kaushansky, "Churn reduction in the wireless industry", Proceedings of the 12th International Conference on Neural Information Processing Systems, 12, 2000, 935-941.
  21. Neslin, S.A., S. Gupta, W. Kamakura, J. Lu, and C. Mason, "Defection detection : improving predictive accuracy of customer churn models", Journal of Marketing Research, Vol. 43, No.2, 2006, 204-211. https://doi.org/10.1509/jmkr.43.2.204
  22. Nie, G., W. Rowe, L. Zhang, Y. Tian, and Y. Shi, "Credit card churn forecasting by logistic regression and decision tree", Expert Systems with Applications, Vol.38, No.12, 2011, 15273-15285. https://doi.org/10.1016/j.eswa.2011.06.028
  23. Ngai, E.W.T., L. Xiu, and D.C.K. Chau, "Application of data mining techniques in customer relationship management : a literature review and classification", Expert Systems with Applications, Vol.36, No.2, 2009, 2592-2602. https://doi.org/10.1016/j.eswa.2008.02.021
  24. Poel, D.V. and B. Lariviere, "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Vol.157, No.1, 2004, 196-217. https://doi.org/10.1016/S0377-2217(03)00069-9
  25. Reichheld, F.F. and E. Sasser, "Zero defections : quality comes to services", Harvard Business Review, Vol.68, No.5, 1990, 105-111.
  26. Reinartz, W. and V. Kumar, "The mismanagement of customer loyalty", Harvard Business Review, Vol.80, 2002, 86-94.
  27. Rust, R.T. and A.J. Zahorik, "Customer satisfaction, customer retention, and market share", Jorunal of Retailing, Vol.69, No.2, 1993, 193-215. https://doi.org/10.1016/0022-4359(93)90003-2
  28. Ryals, L.J. and S. Knox, "Measuring risk-adjusted customer lifetime value and its impact on relationship marketing strategies and shareholder value", European Journal of Marketing, Vol.39, No.5, 2005, 456-472. https://doi.org/10.1108/03090560510590665
  29. Shirazi, F. and M. Mohammadi, "A big data analytics model for customer churn prediction in the retiree segment", International Journal of Information Management, 2018, doi: 10.1016/j.ijinfomgt.2018.10.005 (Downloaded October 17, 2018).
  30. Tang, L., L. Thomas, M. Fletcher, J. Pan, and A. Marshall, "Assessing the impact of derived behavior information on customer attrition in the financial service industry", European Journal of Operation Research, Vol. 236, No.2, 2014, 624-633. https://doi.org/10.1016/j.ejor.2014.01.004
  31. Saaty, T.L., The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.
  32. Saaty, T.L., The Analytic Hierarchy Process : Decision Making in Complex Environments, Plenum Press, New York, 1984.
  33. Saaty, T.L., "Decision making with the analytic hierarchy process", International Journal of Services Sciences, Vol.1, No.1, 2008, 83-98. https://doi.org/10.1504/IJSSCI.2008.017590
  34. Salas, E., M.A. Rosen, and D. Diaz Granados, "Expertise-based Intuition and Decisionmaking in Organizations", Journal of Management, Vol.36, No.4, 2010, 941-973. https://doi.org/10.1177/0149206309350084