• Title/Summary/Keyword: Chloride Ion

Search Result 1,137, Processing Time 0.027 seconds

Analysis of Chloride Ion Penetration for Harbor Concrete Structure with In-situation Environment (항만 콘크리트 구조물의 현장환경변화에 따른 염소이온 침투해석)

  • Han, Sang-Hun;Jang, In-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.225-228
    • /
    • 2004
  • In order to estimate the chloride ion penetration, the model, which considers diffusion and sorption, is proposed on the basis of Finite Element Method (FEM). The FEM program provides the estimation of chloride concentration according to cyclic humidity and sorption. After the humidity diffusion analysis is carried out, the chloride ion diffusion and sorption analysis are conducted on the basis of the preestimated humidity data in each element. Each element has different analysis variables at different ages and locations. At early ages and constant outer humidity, the difference between inner and outer relative humidity causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference with age, the effect of sorption on the chloride ion penetration decreases. By the way, the cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and the quantity of chloride ion around steel at later ages. Therefore, the in-situ analysis of chloride ion penetration for marine concrete structures must be performed considering the cyclic humidity condition and the long term sorption.

  • PDF

Analysis of Chloride Ion Penetraion for Marine Concrete Structure with Cyclic Humidity Environment (건습이 반복되는 환경하의 해양콘크리트 구조물에 대한 염소이온 침투 해석)

  • Han, Sang-Hun
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2004
  • The diffusion model, which considers diffusion and sorption, is proposed. The FEM program developed on the basis of the diffusion model provides the estimation of chloride concentration according to cyclic humidity and sorption. After the humidity diffusion analysis is carried out, the chloride ion diffusion and sorption analysis are conducted on the basis of the preestimated humidity data in each element. Each element has different analysis variables at different ages and locations. At early ages, the difference between inner and outer relative humidity causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference with age, the effect of sorption on the chloride ion penetration decreases. By the way, the cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and the quantity of chloride ion around steel at later ages. Therefore, the in situ analysis of chloride ion penetration for marine concrete structures must be performed considering the cyclic humidity condition and the long term sorption.

Experimental Study of Chloride Binding in Concrete with Mneral Amixtures (혼화재를 혼입한 콘크리트의 염화물 고정화에 관한 실험적 연구)

  • 박정준;고경택;김도겸;김성욱;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.787-792
    • /
    • 2001
  • The chloride ion penetrating into concrete is classified as the fixed chloride ion being bound in reacting to cement hydrate and the free chloride ion having a direct effect on rebar corrosion because being in solution inside porosity of concrete. Therefore, in order to study the diffusion properties of chloride ion, it is needed to evaluate binding chloride ion in concrete. In this study, we tried to give a fundamental information on diffusion of chloride ion in concrete with mineral admixtures through analysis of micro-structure transformations in concrete and effects on binding of chloride ion in cement paste when mixed with fly-ash, blast furnace slag, silica fume etc. which are used to improve durability and permeability of concrete

  • PDF

An Electrochemical Study on the Effect of Salt Affecting to Corrosion Behavior of Concrete Reinforced Steel in Natural Sea Water (천연해수에 침지된 콘크리트 내부의 철근부식거동에 미치는 염분의 영향에 관한 전기화학적 연구)

  • 김광근;류보현;점성종;김기준;문경만
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • When the concrete structures were being made with sand containing chloride ion it was knows that corrosion rate of reinforced steel embedded in concrete with chloride ion was higher than that of concrete with on chloride ion. In this study, the operation of Friedel salts affecting the corrosion behavior of reinforced steel embedded in cement mortar was investigated with electrochemical view. Corrosion potential of reinforced steel embedded in cement mortar with sand containing chloride ion was shifted noble direction than that of cement mortar with no chloride ion after immersed 5 month in natural sea water and also corrosion current density decreased with shifting corrosion potential to noble direction. However Friedel salts appeared from surface to 2.5cm of inside direction of mortar specimen, which is located at 11.5$\circ$(2$\theta$) in XRD analysis and the amount of Ca(OH)2 by SEM photograph in cement mortar with chloride ion was larger than that of cement mortar with mo chloride ion. Eventually it is suggested that Friedel salts was resulted from chloride ion and it acted as the corrosion inhibitor.

  • PDF

Evaluation of Chloride Ion Binding Capacity of Hardened Portland Cement Paste Containing Hydrotalcite (경화된 하이드로탈사이트 혼입 포틀랜드 시멘트 페이스트의 염소이온 고정능력 평가)

  • Han, Jae-Do;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.27-28
    • /
    • 2018
  • Deterioration of reinforced concrete structures due to salt corrosion is a phenomenon that can be easily seen, and the main reason for deterioration is chloride ion. Therefore, researches are actively conducted to control chlorine ion penetration worldwide. The purpose of this study is to evaluate the chloride ion fixation capacity of Portland cement paste containing Hydrotalcite. For this purpose, cement paste containing 0%, 2.5%, and 5% of Hydrotalcite was sealed and cured for 28 days, and the cured cement paste was crushed. Chloride ion solution was prepared at a concentration of 0.5M using NaCl, and the powdered cement paste was reacted for a specific time in aqueous chloride ion solution. After the reaction, the concentration of the chloride ion aqueous solution was measured using a silver nitrate potentiometric titrator, and the reacted cement paste was analyzed using XRD and FT-IR.

  • PDF

Chloride Penetration Analysis of Concrete Structures with Chloride Concentration (염분 농도에 따른 콘크리트 구조물의 염분침투 해석)

  • Yang, Joo-Kyoung
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.137-142
    • /
    • 2008
  • The major influence factor on chloride penetration into concrete structures is chloride ion concentration. In this study, chloride penetration analyses with chloride ion concentration were carried out by the developed program. Also, the service life of concrete structures was predicted. The penetration depth was 32mm in case that chloride ion concentration wad 600ppm. It was shown that the service life of concrete structures with 40mm cover depth was 167 years even though they had been exposed at chloride ion concentration 600ppm during 100 years.

  • PDF

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF

The Analysis of Chloride Ion Penetration into a Concrete Structure in Marine Environment (해안환경하에 있는 콘크리트의 염분침투해석)

  • Cho, Sun-Kyu;Jeon, Gui;Shin, Chee-Burm
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.68-74
    • /
    • 1998
  • An increase of concrete construction in marine environments as well as an increasing use of marine aggregate at the mixing stage of concrete has provoked an important problem. A high concentration of chloride ion in the vicinity of steel bars in concrete is the principal cause of premature reinforcement corrosion in concrete structures. In this study, the behavior of chloride ions introduced into concrete from concrete surface by marine evironment was analysed. A mathematical model including the diffusion of chloride ion in aqueous phase of pores, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete and the chemical reactions of chloride ions with solid phase was presented. Finite element method was employed to carry out numerical analysis. The results of this study may be used to predict the onset of reinforcement corrosion and to identify the maximum limit of chloride ions contained in concrete admixtures.

  • PDF

An Experimental Study on Evaluation of Coefficient of Chloride Diffusion by Electrochemical Accelerated Test in Concrete (전기화학적 촉진법에 의한 콘크리트의 염화물이온 확산계수 평가에 관한 실험적 연구)

  • 조봉석;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.705-710
    • /
    • 2003
  • In this study, to confirm the diffusion coefficient of chloride ion is affected by the concentration of NaCl solution, capacity of voltage, time of an electric current, the diffusion coefficient of chloride ion in concrete was investigated through an electrochemical accelerated test. and the results of these test were compared with the diffusion coefficient of chloride ion by test of sodium chloride solution digestion. As the results of this study, the diffusion coefficient of chloride ion wasn't affected by the concentration of NaCl solution, capacity of voltage, time of an electric current within the range of this study and was similar to the diffusion coefficient of chloride ion by test of sodium chloride solution digestion.

  • PDF

Development of Chloride-ion Penetration Device for Concrete Considering Pressure Condition (압력조건을 고려한 콘크리트의 염화물이온 침투 장치 개발)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.25-26
    • /
    • 2018
  • In this study, the device was developed for evaluating the effect of pressure on chloride ion penetration of concrete. And chloride-ion penetration depth and water soluble chloride contents was evaluated concrete using ordinary portland cement and blast-furnace slag cement using developed device. As a result, chloride ion penetration of concrete was promoted according to the action of pressure and the exposure period. and the incorporation of blast-furnace slag was effective for chloride attack resistibility under pressure.

  • PDF