• Title/Summary/Keyword: Chip-packaging

Search Result 481, Processing Time 0.025 seconds

Flexible and Embedded Packaging of Thinned Silicon Chip (초 박형 실리콘 칩을 이용한 유연 패키징 기술 및 집적 회로 삽입형 패키징 기술)

  • 이태희;신규호;김용준
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • A flexible packaging scheme, which includes chip packaging, has been developed using a thinned silicon chip. Mechanical characteristics of thinned silicon chips are examined by bending tests and finite element analysis. Thinned silicon chips (t<30 $\mu\textrm{m}$) are fabricated by chemical etching process to avoid possible surface damages on them. And the chips are stacked directly on $Kapton^{Kapton}$film by thermal compressive bonding. The low height difference between the thinned silicon chip and $Kapton^{Kapton}$film allows electroplating for electrical interconnection method. Because the 'Chip' is embedded in the flexible substrate, higher packaging density and wearability can be achieved by maximized usable packaging area.

  • PDF

A Study on Automotive LED Business Strategy Based on IP-R&D : Focused on Flip-Chip CSP (Chip-Scale Packaging) (IP-R&D를 통한 자동차분야 LED사업전략에 관한 연구 : Flip-Chip을 채용한 CSP (Chip-Scale Packaging) 기술을 중심으로)

  • Ryu, Chang Han;Choi, Yong Kyu;Suh, Min Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 2015
  • LED (Light Emitting Diode) lighting is gaining more and more market penetration as one of the global warming countermeasures. LED is the next generation of fusion source composed of epi/chip/packaging of semiconductor process technology and optical/information/communication technology. LED has been applied to the existing industry areas, for example, automobiles, TVs, smartphones, laptops, refrigerators and street lamps. Therefore, LED makers have been striving to achieve the leading position in the global competition through development of core source technologies even before the promotion and adoption of LED technology as the next generation growth engine with eco-friendly characteristics. However, there has been a point of view on the cost compared to conventional lighting as a large obstacle to market penetration of LED. Therefore, companies are developing a Chip-Scale Packaging (CSP) LED technology to improve performance and reduce manufacturing costs. In this study, we perform patent analysis associated with Flip-Chip CSP LED and flow chart for promising technology forecasting. Based on our analysis, we select key patents and key patent players to derive the business strategy for the business success of Flip-Chip CSP PKG LED products.

Roadmap toward 2010 for high density/low cost semiconductor packaging

  • Tsukada, Yutaka
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.12a
    • /
    • pp.155-162
    • /
    • 1999
  • A bare chip packaging technology by an encapsulated flip chip bonding on a build-up printed circuit board has emerged in 1991. Since then, it enabled a high density and low cost semiconductor packaging such as a direct chip bonding on mother board and high density surface mount components, such as BGA and CSP. This technology can respond to various requirements from applications and is considered to take over a main role of semiconductor packaging in the next decade.

  • PDF

Recent Progress of Hybrid Bonding and Packaging Technology for 3D Chip Integration (3D 칩 적층을 위한 하이브리드 본딩의 최근 기술 동향)

  • Chul Hwa Jung;Jae Pil Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.38-47
    • /
    • 2023
  • Three dimensional (3D) packaging is a next-generation packaging technology that vertically stacks chips such as memory devices. The necessity of 3D packaging is driven by the increasing demand for smaller, high-performance electronic devices (HPC, AI, HBM). Also, it facilitates innovative applications across another fields. With growing demand for high-performance devices, companies of semiconductor fields are trying advanced packaging techniques, including 2.5D and 3D packaging, MR-MUF, and hybrid bonding. These techniques are essential for achieving higher chip integration, but challenges in mass production and fine-pitch bump connectivity persist. Advanced bonding technologies are important for advancing the semiconductor industry. In this review, it was described 3D packaging technologies for chip integration including mass reflow, thermal compression bonding, laser assisted bonding, hybrid bonding.

  • PDF

On-chip Decoupling Capacitor for Power Integrity (전력 무결성을 위한 온 칩 디커플링 커패시터)

  • Cho, Seungbum;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.

Adhesive Flip Chip Technology

  • Paik, Kyung-W
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.10a
    • /
    • pp.7-38
    • /
    • 2000
  • Performance, reliability, form factor drive flip chip use. BGAs and CSPs will provide stepping stone to FC DCA .Growing vendor infrastructure - Low cost, high density organic substrates -New generations of fluxes and underfills .Adhesives flip chip technology as a low cost flip chip alternatives -Low cost Au stud or Electroless Ni bumps -Reliable thermal cycling and electrical performance.

  • PDF

Flip Chip Assembly Using Anisotropic Conductive Adhesives with Enhanced Thermal Conductivity

  • Yim, Myung-Jin;Kim, Hyoung-Joon;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the development of new anisotropic conductive adhesives with enhanced thermal conductivity for the wide use of adhesive flip chip technology with improved reliability under high current density condition. The continuing downscaling of structural profiles and increase in inter-connection density in flip chip packaging using ACAs has given rise to reliability problem under high current density. In detail, as the bump size is reduced, the current density through bump is also increased. This increased current density also causes new failure mechanism such as interface degradation due to inter-metallic compound formation and adhesive swelling due to high current stressing, especially in high current density interconnection, in which high junction temperature enhances such failure mechanism. Therefore, it is necessary for the ACA to become thermal transfer medium to improve the lifetime of ACA flip chip joint under high current stressing condition. We developed thermally conductive ACA of 0.63 W/m$\cdot$K thermal conductivity using the formulation incorporating $5 {\mu}m$ Ni and $0.2{\mu}m$ SiC-filled epoxy-bated binder system to achieve acceptable viscosity, curing property, and other thermo-mechanical properties such as low CTE and high modulus. The current carrying capability of ACA flip chip joints was improved up to 6.7 A by use of thermally conductive ACA compared to conventional ACA. Electrical reliability of thermally conductive ACA flip chip joint under current stressing condition was also improved showing stable electrical conductivity of flip chip joints. The high current carrying capability and improved electrical reliability of thermally conductive ACA flip chip joint under current stressing test is mainly due to the effective heat dissipation by thermally conductive adhesive around Au stud bumps/ACA/PCB pads structure.

  • PDF

Overview on Flip Chip Technology for RF Application (RF 응용을 위한 플립칩 기술)

  • 이영민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.61-71
    • /
    • 1999
  • The recent trend toward higher frequencies, miniaturization and lower-cost in wireless communication equipment is demanding high density packaging technologies such flip chip interconnection and multichip module(MCM) as a substitute of conventional plastic package. With analyzing the recently reported research results of the RF flip chip, this paper presents the technical issues and advantages of RF flip chip and suggest the flip chip technologies suitable for the development stage. At first, most of RF flip chips are designed in a coplanar waveguide line instead of microstrip in order to achieve better electrical performance and to avoid the interaction with a substrate. Secondly, eliminating wafer back-side grinding, via formation, and back-side metallization enables the manufacturing cost to be reduced. Finally, the electrical performance of flip chip bonding is much better than that of plastic package and the flip chip interconnection is more suitable for Transmit/Receiver modules at higher frequency. However, the characterization of CPW designed RF flip chip must be thoroughly studied and the Au stud bump bonding shall be suggested at the earlier stage of RF flip chip development.

  • PDF

Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging (신축성 전자패키징을 위한 CNT-Ag 복합패드에서의 플립칩 공정)

  • Choi, Jung Yeol;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.17-23
    • /
    • 2013
  • As a basic research to develop stretchable electronic packaging technology, CNT-Ag composite pads were formed on top of Cu/Sn chip bumps and flip-chip bonded using anisotropic conductive adhesive. Average contact resistances of the flip-chip joints were measured with respect to bonding pressure and presence of the CNT-Ag composite pads. When Cu/Sn chip bumps with CNT-Ag composite pads were flip-chip bonded to substrate Cu pads at 25MPa or 50 MPa, contact resistance was too high to measure. The specimen processed by flip-chip bonding the Cu/Sn chip bumps with CNT-Ag composite pads to the substrate Cu pads exhibited an average contact resistance of $213m{\Omega}$. On the other hand, the flip-chip specimens processed by bonding Cu/Sn chip bumps without CNT-Ag composite pads to substrate Cu pads at 25MPa, 50MPa, and 100MPa exhibited average contact resistances of $370m{\Omega}$, $372m{\Omega}$, and $112m{\Omega}$, respectively.