DOI QR코드

DOI QR Code

On-chip Decoupling Capacitor for Power Integrity

전력 무결성을 위한 온 칩 디커플링 커패시터

  • Cho, Seungbum (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
  • 조승범 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2017.09.15
  • Accepted : 2017.09.22
  • Published : 2017.09.30

Abstract

As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.

Keywords

References

  1. M. Popovich, "High Performance Power Distribution Networks with on-Chip Decoupling Capacitors for Nanoscale Integrated Circuits(in USA.)", in Ph.D. Thesis, Univ. Rochester, NY (2007).
  2. M. Popovich, and E. G. Froed,am, "Decoupling Capacitors for Multi-Voltage Power Distribution Systems", IEEE Trans. VLSI Systems., 14(3), 217 (2006). https://doi.org/10.1109/TVLSI.2006.871756
  3. S. Ramesh, B. A. Shutzberg, and C. Huang, "Dielectric Nanocomposites for Integral Thin Film Capacitors: Materials Design, Fabrication and Integration Issues", IEEE Trans. Adv. Packag., 26(1), 17 (2003). https://doi.org/10.1109/TADVP.2003.811365
  4. T. Lenihan, L. Schaper, and Y. Shi, "Embedded Thin Film Resistors, Capacitors and Inductors in Flexible Polyimide Films", Proc. 46th Electron. Compon. Technol. Conf., 119 (1996).
  5. F. Wang, and Y. Wang, "Development and Utilization of Integral Thin Film Capacitors", Procedia Environ. Sci., 18, 871 (2013). https://doi.org/10.1016/j.proenv.2013.04.117
  6. A. M. Saleem, G. Goransson, and V. Des,aros, "CMOS Compatible on-Chip Decoupling Capacitor Based on Vertically Aligned Carbon Nanofibers", Solid State Electron., 107, 15 (2015). https://doi.org/10.1016/j.sse.2015.01.022
  7. T. Ando, E. Carther, and P. Jamison, "CMOS Compatible MIM Decoupling Capacitor with Reliable sub-nm EOT High-k Stacks for the 7 nm Node and Beyond", Proc. IEEE Int. Electron Devices Meeting (2016).
  8. G. Carchon, K. Vaesen, and S. Brebets, "Multilayer Thin-Film MCM-D for the Integration of High-Performance RF and Microwave Circuits", IEEE Trans. Compon., Packag., Manuf. Technol., 24(3), 510 (2001). https://doi.org/10.1109/6144.946500
  9. P. Chahal, R. R. Tummara, and M. G. Allen, "A Novel Integrated Decoupling Capacitor for MCM-L Technology", IEEE Trans. Compon., Packag., Manuf. Technol., Part B., 21(2), 184 (1998). https://doi.org/10.1109/96.673707
  10. D. DimosI, S. Llockwood, and R. Schwartz, "Thin-Film Decoupling Capacitors for Multichip Modules", IEEE Trans. Compon., Packag., Manuf. Technol., Part B., 18(1), 174 (1995).
  11. Y. Rao, and C. Wong, "Material Characterization of a highdielectric- constant polymer-ceramic Composite for Embedded Capacitor for RF Applications", J. Appl. Polym. Sci., 92(4), 2228 (2004). https://doi.org/10.1002/app.13690
  12. K. Fischer, M. Agostimelli, and C. Allen, "Low-k Interconnect Stack with Multi-Layer Air Gap and Tri-Metal-Insulator- Metal Capacitors for 14nm High Volume Manufacturing", Proc. IEEE Int. Intercon. Technol. Conf., (2015).
  13. K. Kurhara, T. Shioga, and J. D. Banecki, "Electrical Properties of Low-Inductance Barium Strontium Titanate Thin Film Decoupling Capacitors", J. Eur. Ceram. Soc., 24(6), 1873 (2004). https://doi.org/10.1016/S0955-2219(03)00538-7
  14. G. Banhegyi, "Comparison of Electrical Mixture Rules for Composites", Colloid. Polym. Sci., 264(12), 1030 (1986). https://doi.org/10.1007/BF01410321
  15. B. Lestriez, A. Maazouz, and J. Gerard, "Is the Maxwell-Sillars- Wagner Model Reliable for Describing the Dielectric Properties of a core-shell particle-epoxy System?", Polymer., 39(26), 6733 (1998). https://doi.org/10.1016/S0032-3861(98)00093-7
  16. J. Xu, and C. Wong, "Characterization and Properties of an organic-inorganic Dielectric Nanocomposite for Embedded Decoupling Capacitor Applications", Composites, Part A., 38(1), 13 (2007). https://doi.org/10.1016/j.compositesa.2006.02.002
  17. P. Zhou, K. Sridharan, and S. S. Sapatnekar, "Optimizing Decoupling Capacitors in 3D Circuits for Power Grid Integrity", IEEE Design & Test of Computers., 26(5), 15 (2009). https://doi.org/10.1109/MDT.2009.120
  18. M. Kang, K. Cho, and S. Nahm, "Effects of Vanadium Substitution on the Electrical Performance of Amorphous $SrBi_2$-$Ta_2O_9$ Thin-Film Capacitors", Scr. Mater., 7745 (2014).
  19. T. Bertaud, C. Bermond, and S. Blonkowski, "Electrical Characterization of Advanced MIM Capacitors with $ZrO_2$ Insulator for High-Density Packaging and RF Applications", IEEE Trans. Compon., Packag., Manuf. Technol., 2(3), 502 (2012). https://doi.org/10.1109/TCPMT.2011.2182611
  20. S. Cimno, A. Padovani, and L. Larcher, "A Study of the Leakage Current in TiN/$HfO_2$/TiN Capacitors", Microelectron. Eng., 95, 71.(2012). https://doi.org/10.1016/j.mee.2011.03.009
  21. J. H. Han, S. Han, and W. Lee, "Improvement in the Leakage Current Characteristic of Metal-Insulator-Metal Capacitor by Adopting RuO2 Film as Bottom Electrode", Appl. Phys. Lett., 99(2), 022901 (2011). https://doi.org/10.1063/1.3609875
  22. B. Ma, D. Kwon and M. Narayanan, "Dielectric Properties of PLZT Film-on-Foil Capacitors", Mater Lett., 62(20), 3573 (2008). https://doi.org/10.1016/j.matlet.2008.03.060
  23. J. Choi, C. Choi, and K. Cho, "Effect of Oxygen Vacancy and Mn-Doping on Electrical Properties of $$ Thin Film Grown by Pulsed Laser Deposition", Acta Mater., 57(8), 2454 (2009). https://doi.org/10.1016/j.actamat.2009.01.038
  24. X. Zhu, E. Defay, and Y. Lee, "High Permittivity $Bi_{24}Fe_2O_{39}$ Thin Films Prepared by a Low Temperature Process", Appl. Phys. Lett., 97(23), 232903 (2010). https://doi.org/10.1063/1.3524492
  25. J. Wang, J. Lu, and Y. Li, "Placement of Decoupling Capacitor on Packages Based on Effective Decoupling Radius", 18th IEEE Electron. Packag. Technol. Conf. (2016).
  26. J. Y. Choi, and M. Swaminathan, "Decoupling Capacitor Placement in Power Delivery Networks using MFEM", IEEE Trans. Compon., Packag., Manuf. Technol., 1(10), 1651 (2011). https://doi.org/10.1109/TCPMT.2011.2165954
  27. M. Popovich, and E. G. Fredman, "Impedance Characteristics of Decoupling Capacitors in Multi-Power Distribution Systems", Proc. 11th IEEE Int. Conf. Electronics, Circuits Systems., (2004).
  28. X. Zhao, M. R. Scheuermann, and S. K. Lim, "Analysis and Modeling of DC Current Crowding for TSV-Based 3-D Connections and Power Integrity", IEEE Trans. Compon., Packag., Manuf. Technol., 4(1), 123.(2014). https://doi.org/10.1109/TCPMT.2013.2276779
  29. Y. C. Tan, C. M. Tan, X. W. Zhang, T. C. Chai, and D. Q. Yu, "Electromigration performance of through silicon via (TSV), a modeling approach", Microelectron. Rel., 50(9-11), 1336 (2010). https://doi.org/10.1016/j.microrel.2010.07.024
  30. L. H. Allen, and M. Y. Zhang, "Solutions to current crowding in circular vias for contact resistance measurements", J. Appl. Phys., 70(1), 253 (1991). https://doi.org/10.1063/1.350320
  31. M. B. Healy, and S. K. Lim, "Distributed TSV topology for 3-D powersupply networks", IEEE Trans. Very Large Scale Integr. Syst., 20(11), 2066 (2012). https://doi.org/10.1109/TVLSI.2011.2167359
  32. K. Oh, J. Ma, and S. Kim, "Interconnect Process Technology for High Power Delivery and Distribution", J. Microelectron. Packag. Soc., 19(3), 9 (2012). https://doi.org/10.6117/kmeps.2012.19.3.009
  33. G. Schrom, P. Hazucha, and J. Hahn, "Feasibility of Monolithic and 3D-Stacked DC-DC Converters for Microprocessors in 90 nm Technology Generation", Proc. Int. Symp. Low Power Electron. Design., 263 (2004).
  34. J. Sun, J. Lu, and D. Giuliano, "3D Power Delivery for Microprocessors and High-Performance ASICs", Appl. Power Electron. Conf., 127 (2007).