• Title/Summary/Keyword: Chip Thickness

Search Result 276, Processing Time 0.023 seconds

Analysis of the Up End Milling Process by Transforming to the Equivalent Oblique Cutting Model (경사절삭 모델에 의한 상향 엔드밀링절삭 해석)

  • 이영문;송태성;심보경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.902-906
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel. 82% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

The Shear and Friction characteristics Analysis of End-milling (엔드밀링의 전단특성 및 마찰특성 해석)

  • Lee, Y.M.;Song, T.S.;Shim, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.724-729
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

The Shear and Friction Characteristics Analysis of End-Milling (엔드밀링의 전단특성 및 마찰특성 해석)

  • Lee, Yeong-Mun;Song, Tae-Seong;Sim, Bo-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1520-1527
    • /
    • 2001
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

Chip-on-Glass Process Using the Thin Film Heater Fabricated on Si Chip (Si 칩에 형성된 박막히터를 이용한 Chip-on-Glass 공정)

  • Jung, Boo-Yang;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.57-64
    • /
    • 2007
  • New Chip-on-glass technology to attach an Si chip directly on the glass substrate of LCD panel was studied with local heating method of the Si chip by using thin film heater fabricated on the Si chip. Square-shaped Cu thin film heater with the width of $150\;{\mu}m$, thickness of $0.8\;{\mu}m$, and total length of 12.15 mm was sputter-deposited on the $5\;mm{\times}5\;mm$ Si chip. With applying current of 0.9A for 60 sec to the Cu thin film heater, COG bonding of a Si chip to a glass substrate was successfully accomplished with reflowing the Sn-3.5Ag solder bumps on the Si chip.

  • PDF

The Geometric Machining Mechanism of Ultrasonic Drilling (초음파 드릴링의 기하학적 가공 메커니즘 분석)

  • Jang Sung-Hoon;Lee Seok-Woo;Choi Hon-Zong;Lee Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.76-83
    • /
    • 2005
  • With the acceleration of the miniaturization of products, especially in recent years, machining technologies for these products is in need of improvement. Conventional technologies have limitations in realizing the miniaturization due to the downsizing effects of the tools, which lack sufficient cutting stiffness during machining. The application of ultrasonic vibration is one of the most useful solutions in dealing with the problem. This study focused on the difference of ultrasonic drilling from conventional one in geometrical machining mechanism and the corresponding machining results. In detailed, some mathematical equations for drill cutting edge paths during drilling were extracted and new method to find uncut chip thickness from above equations was suggested. The experiments were carried out through the comparison between the results (disposed chips and internal surface states of holes) of conventional drilling and those of ultrasonic drilling. It was determined that the geometrical paths of cutting edges and analyzed uncut chip thickness agree with the appearance of disposed chips. Furthermore, the change in tool path by ultrasonic vibration resulted in the improvement of surface statement.

Effect of Plasma Treatment on the Bond Strength of Sn-Pb Eutectic Solder Flip Chip (Sn-Pb 공정솔더 플립칩의 접합강도에 미치는 플라즈마 처리 효과)

  • 홍순민;강춘식;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.498-504
    • /
    • 2002
  • Fluxless flip chip bonding process using plasma treatment instead of flux was investigated. The effect of plasma process parameters on tin-oxide etching characteristics were estimated with Auger depth profile analysis. The die shear test was performed to evaluate the adhesion strength of the flip chip bonded after plasma treatment. The thickness of oxide layer on tin surface was reduced after Ar+H2 plasma treatment. The addition of H2 improved the oxide etching characteristics by plasma. The die shear strength of the plasma-treated Sn-Pb solder flip chip was higher than that of non-treated one but lower than that of fluxed one. The difference of the strength between plasma-treated specimen and non-treated one increased with increase in bonding temperature. The plasma-treated flip chip fractured at solder/TSM interface at low bonding temperature while the fracture occurred at solder/UBM interface at higher bonding temperature.

A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process (CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Micro-bump Joining Technology for 3 Dimensional Chip Stacking (반도체 3차원 칩 적층을 위한 미세 범프 조이닝 기술)

  • Ko, Young-Ki;Ko, Yong-Ho;Lee, Chang-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.865-871
    • /
    • 2014
  • Paradigm shift to 3-D chip stacking in electronic packaging has induced a lot of integration challenges due to the reduction in wafer thickness and pitch size. This study presents a hybrid bonding technology by self-alignment effect in order to improve the flip chip bonding accuracy with ultra-thin wafer. Optimization of Cu pillar bump formation and evaluation of various factors on self-alignment effect was performed. As a result, highly-improved bonding accuracy of thin wafer with a $50{\mu}m$ of thickness was achieved without solder bridging or bump misalignment by applying reflow process after thermo-compression bonding process. Reflow process caused the inherently-misaligned micro-bump to be aligned due to the interface tension between Si die and solder bump. Control of solder bump volume with respect to the chip dimension was the critical factor for self-alignment effect. This study indicated that bump design for 3D packaging could be tuned for the improvement of micro-bonding quality.

COG (Chip On Glass) Bonding Technology for Flat Panel Display Using Induction Heating Body in AC Magnetic Field (교류자기장에 의한 유도가열체를 이용한 평판 디스플레이용 COG (Chip On Glass) 접속기술)

  • Lee Yoon-Hee;Lee Kwang-Yong;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.315-321
    • /
    • 2005
  • Chip-on-glass technology to attach IC chip directly on the glass substrate of flat panel display was studied by using induction heating body in AC magnetic field. With applying magnetic field of 230 Oe at 14 kHz, the temperature of an induction heating body made with Cu electrodeposited film of 5 mm${\times}$5 mm size and $600{\mu}m$ thickness reached to $250^{\circ}C$ within 60 seconds. However, the temperature of the glass substrate was maintained below $100^{\circ}C$ at a distance larger than 2 mm from the Cu induction heating body. COG bonding was successfully accomplished with reflow of Sn-3.5Ag solder bumps by applying magnetic field of 230 Oe at 14 kHz for 120 seconds to a Cu induction heating body of 5mm${\times}$5mm size and $600{\mu}m$ thickness.

  • PDF

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.