• Title/Summary/Keyword: Cheong

Search Result 7,074, Processing Time 0.034 seconds

Studies on the Production of Alcohol from Woods (목재(木材)를 이용(利用)한 Alcohol 생산(生産)에 관(關)한 연구(硏究))

  • Cheong, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.67-91
    • /
    • 1983
  • In order to examine the alcohol production from softwoods (Pinus densiflora Sieb. et Zucc., Pinus rigida Miller, Larix leptolepis Gordon) and hardwoods (Alnus japonica Steud., Castanea crenata Sieb. et Zucc. Populus euramericana CV 214), chemical compositions were analyzed and conditions of acid hydrolysis with wood meals were established. Also strains which could remarkably decompose the cellulose were identified, and conditions of cellulase production of strains, characteristics of cellulase, and alcohol fermentation were examined. The results were summarized as follows. 1) In acid hydrolysis of wood, the high yield of reducing sugars was shown from 1.0% to 2.0% of hydrochloric acid and 2.0% of sulfuric acid. The highest yield was produced 23.4% at wood meals of Alnus japonica treated with 1.0% of hydrochloric acid. 2) The effect of raising the hydrolysis was good at $1.5kg/cm^2$, 30 times (acid/wood meal), and 45 min in treating hydrochloric acid and 30 min in treating sulfuric acid. 3) The pretreatments with concentrated sulfuric acid were more effective concentration ranged from 50% to 60% than that with hydrochloric acid and its concentration ranged from 50% to 60%. 4) The quantative analysis of sugar composition of acid hydrolysates revealed that glucose and arabinose were assayed 137.78mg and 68.24mg with Pinus densiflora, and 102.22mg and 65.89mg with Alnus janonica, respectively. Also xylose and galactose were derived. 5) The two strains of yeast which showed remarkably high alcohol productivity were Saccharomyces cerevisiae JAFM 101 and Sacch. cerevisiae var. ellipsoldeus JAFM 125. 6) The production of alcohol and the growth of yeasts were effective with the neutralization of acid hydrolysates by $CaCO_3$ and NaOH. Production of alcohol was excellent in being fermented between pH 4.5-5.5 at $30^{\circ}C$ and growth of yeasts between pH 5.0-6.0 at $24^{\circ}C$. 7) The production of alcohol was effective with the addition of 0.02% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, 0.02% $MnCl_2$. Growth of yeasts was effective with 0.04-0.06% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.2% $K_2HPO_4$ and $K_3PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, and 0.002% NaCl. 8) Among various vitamins, the production of alcohol was effective with the addition to pyridoxine and riboflavin, and the growth of yeasts with the addition to thiamin, Ca-pantothenate, and biotin. The production of aocohol was increased in 0.1% concentration of tannin and furfural, but mas decreased in above concentration. 9) In 100ml of fermented solution, alcohol and yeast were produced 2.201-2.275ml and 84-114mg for wood meals of Pinus densiflora, and 2.075-2.125ml and 104-128mg for that of Alnus japonica. Residual sugars were 0.55-0.60g and 0.60-0.65g for wood meals of Pinus densiflora and Alnus japonica, respectively, and pH varied from 3.3 to 3.6. 10) A strain of Trichoderma viride JJK. 107 was selected and identified as its having the highest activity of decomposing cellulose. 11) The highest cellulase production was good when CMCase incubated for 5 days at pH 6.0, $30^{\circ}C$ and xylanase at pH 5.0, $35^{\circ}C$. The optimum conditions of cellulase activity were proper in case of CMCase at pH 4.5, $50^{\circ}C$ and xylanase at pH 4.5, $40^{\circ}C$. 12) In fermentation with enzymatic hydrolysates, the peracetic acid treatment for delignification showed the best yields of alcohol and its ratio was effective with the addition of about 10 times. 13) The production of alcohol was excellent when wood meals and Koji of wheat bran was mixed with 10 to 8 and the 10g of wood meals of Pinus densiflora produced 2.01-2.14ml of alcohol and Alnus japonica 2.11-2.20ml.

  • PDF

Spatial Distribution of Aging District in Taejeon Metropolitan City (대전광역시 노령화 지구의 공간적 분포 패턴)

  • Jeong, Hwan-Yeong;Ko, Sang-Im
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • This study is to investigate and analyze regional patterns of aging in Taejeon Metropolitan city-the overpopulated area of Choong-Cheong Province-by cohort analysis method. According to the population structure transition caused by rapid social and economic changes, Korea has made a rapid progress in population aging since 1970. This trend is so rapid that we should prepare for and cope with aging society. It is not only slow to cope with it in our society, but also there are few studies on population aging of the geographical field in Korea. The data of this study are the reports of Population and Housing Censuses in 1975 and 1985 and General Population and Housing Censuses with 10% sample survey in 1995 taken by National Statistical Office. The research method is to sample as the aging district the area with high aged population rate where the populations over 60 reside among total population during the years of 1975, 1985, 1995 and to sample the special districts of decreasing population where the population decreases very much and the special districts of increasing population in which the population increases greatly, presuming that the reason why aged population rate increases is that non-elderly population high in mobility moves out. It is then verified and ascertained whether it is true or not with cohort analysis method by age. Finally regional patterns in the city are found through the classification and modeling by type based on the aging district, the special districts of decreasing population, and the special districts of increasing population. The characteristics of the regional patterns show that there is social population transition and that non-elderly population moves out. The aging district with the high aged population rate is divided into high-level keeping-up type, relative falling type below the average of Taejeon city in aging progress, and relative rising type above the average of the city. This district can be found at both the central area of the city and the suburbs because Taejeon city has the characteristic of over-bounded city. But it cannot be found at the new built-up area with the in-migration of large population. The special districts of decreasing population where the population continues to decrease can be said to be the population doughnuts found at the CBD and its neighboring inner area. On the other hand, the special districts of increasing population where the population continues to increase are located at the new built-up area of the northern part in Taejeon city. The special districts of decreasing population are overlapping with the aging district and higher in aged population rate by the out-migration of non-elderly population. The special districts of increasing population are not overlapping with the aging district and lower in aged population rate by the in-migration of non-elderly population. To clarify the distribution map of the aging district, the special districts of decreasing and increasing population and the aging district are divided into four groups such as the special districts of decreasing population group-the same one as the aging district, the special districts of decreasing population group, the special districts of increasing population group, and the other district. With the cohort analysis method by age used to investigate the definite increase and decrease of aging population through population transition of each group, it is found that the progress of population aging is closely related to the social population fluctuation, especially that aged population rate is higher with the out-migration of non-elderly population. This is to explain each model of CBD, inner area, and the suburbs after modeling the aging district, the special districts of decreasing population, and the special districts of increasing population in Taejeon city. On the assumption that the city area is a concentric circle, it is possible to divide it into three areas such as CBD(A), the inner area(B), and the suburbs(C). The special districts of increasing and decreasing population in the city are divided into three districts-the special districts of decreasing population(a), the special districts of increasing population(b), and the others(c). The aging district of this city is divided into the aging district($\alpha$) and the others($\beta$). And then modeling these districts, it is probable to find regional patterns in the city. $Aa{\alpha}$ and $Ac{\beta}$ patterns are found in the CBD, in which $Aa{\alpha}$ is the special district of decreasing population and is higher in aged population rate because of aged population low in mobility staying behind and out-migration of non-elderly population. $Ba{\alpha}$, $Ba{\beta}$, $Bb{\beta}$, and $Bc{\beta}$ patterns are found in the inner area, in which neighboring area $Ba{\alpha}$ pattern is located. $Bb{\beta}$ pattern is located at the new developing area of newly built apartment complex. $Cb{\beta}$, $Cc{\alpha}$, and $Cc{\beta}$ patterns are found in the suburbs, among which $Cc{\alpha}$ pattern is highest in population aging. It is likely that the $Cc{\beta}$ under housing land readjustment on a large scale will be the $Cb{\beta}$ pattern. As analyzed above, marriage and out-migration of new family, non-elderly population, with house purchase are main factors in accelerating population aging in the central area of the city. Population aging is responsible for the great increase of aged population with longer life expectancy by the low death rate, the out-migration of non-elderly population, and the age group of new aged population in the suburbs. It is necessary to investigate and analyze the regional patterns of population aging at the time when population problems caused by aging as well as longer life expectancy are now on the increase. I hope that this will help the future study on population aging of the geographical field in Korea. As in the future population aging will be a major problem in our society, local autonomy should make a plan for the problem to the extent that population aging progresses by regional groups and inevitably prepare for it.

  • PDF

A Comparative Study on Buddhist Painting, MokWooDo (牧牛圖: PA Comparative Study on Buddhist Painting, MokWooDo (牧牛圖: Painting of Bull Keeping) and Confucian/Taoist Painting, SipMaDo (十馬圖: Painting of Ten Horses) - Focused on SimBeop (心法: Mind Control Rule) of the Three Schools: Confucianism, Buddhism and Taoism -nd Control Rule) of the Three Schools: Confucianism, Buddhism and Taoism - (불가(佛家) 목우도(牧牛圖)와 유·도(儒·道) 십마도(十馬圖) 비교 연구 - 유불도(儒佛道) 삼가(三家)의 심법(心法)을 중심으로 -)

  • Park, So-Hyun;Lee, Jung-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.67-80
    • /
    • 2022
  • SipWooDo (十牛圖: Painting of Ten Bulls), a Buddhist painting, is a kind of Zen Sect Buddhism painting, which is shown as a mural in many of main halls of Korean Buddhist temples. MokWooDo has been painted since Song Dynasty of China. It paints a cow, a metaphor of mind and a shepherd boy who controls the cow. It comes also with many other types of works such as poetry called GyeSong, HwaWoonSi and etc. That is, it appeared as a pan-cultural phenomenon beyond ideology and nation not limited to Chinese Buddhist ideology of an era. This study, therefore, selects MokWooDo chants that represent Confucianism, Buddhism and Taoism to compare the writing purposes, mind discipline methods and ultimate goals of such chant literatures in order to integrate and comprehend the ideologies of such three schools in the ideologically cultural aspect, which was not fully dealt with in the existing studies. In particular, the study results are: First, the SipWooDo of Buddhist School is classified generally into Bo Myoung's MokWooDo and Kwak Ahm's SimWooDo (尋牛圖: Painting of Searching out a Bull). Zen Sect Buddhism goes toward nirvana through enlightenment. Both MokWooDo and SimWooDo of Buddhist School are the discipline method of JeomSu (漸修: Discipline by Steps). They were made for SuSimJeungDo (修心證道: Enlightenment of Truth by Mind Discipline), which appears different in HwaJe (畫題: Titles on Painting) and GyeSong (偈頌: Poetry Type of Buddhist Chant) between Zen Sect Buddhism and Doctrine Study Based Buddhism, which are different from each other in viewpoints. Second, Bo Myoung's MokWooDo introduces the discipline processes from MiMok (未牧: Before Tamed) to JinGongMyoYu (眞空妙有: True Vacancy is not Separately Existing) of SsangMin (雙泯: the Level where Only Core Image Appears with Every Other Thing Faded out) that lie on the method called BangHalGiYong (棒喝機用: a Way of Using Rod to Scold). On the other side, however, it puts its ultimate goal onto the way to overcome even such core image of SsangMin. Third, Kwak Ahm's SimWooDo shows the discipline processes of JeomSu from SimWoo (尋牛: Searching out a Bull) to IpJeonSuSu (入鄽垂手: Entering into a Place to Exhibit Tools). That is, it puts its ultimate goal onto HwaGwangDongJin (和光同塵: Harmonized with Others not Showing your own Wisdom) where you are going together with ordinary people by going up to the level of 'SangGuBori (上求菩提: Discipline to Go Up to Gain Truth) and HaHwaJungSaeng (下化衆生: Discipline to Go Down to Be with Ordinary People)' through SaGyoIpSeon (捨敎入禪: Entering into Zen Sect Buddhism after Completing a Certain Volume of Doctrine Study), which are working for leading the ordinary people of all to finding out their Buddhist Nature. Fourth, Shimiz Shunryu (清水春流)'s painting YuGaSipMaDo (儒家十馬圖: Painting of Ten Horses of Confucian School) borrowed Bo Myoung's MokWooDo. That is, it borrowed the terms and pictures of Buddhist School. However, it features 'WonBulIpYu (援佛入儒: Enlightenment of Buddhist Nature by Confucianism)', which is based on the process of becoming a greatly wise person through Confucian study to go back to the original good nature. From here, it puts its goal onto becoming a greatly wise person, GunJa who is completely harmonized with truth, through the study of HamYang (涵養: Mind Discipline by Widening Learning and Intelligence) that controls outside mind to make the mind peaceful. Its ultimate goal is in accord with "SangCheonJiJae, MuSeongMuChee (上天之載, 無聲無臭: Heaven Exists in the Sky Upward; It is Difficult to Get the Truth of Nature, which has neither sound nor smell)' words from Zhōngyōng. Fifth, WonMyeongNhoYin (圓明老人)'s painting SangSeungSuJinSamYo (上乘修真三要: Painting of Three Essential Things to Discipline toward Truth) borrowed Bo Myoung's MokWooDo while it consists of totally 13 sheets of picture to preach the painter's will and preference. That is, it features 'WonBulIpDo (援佛入道: Following Buddha to Enter into Truth)' to preach the painter's doctrine of Taoism by borrowing the pictures and poetry type chants of Buddhist School. Taoism aims to become a miraculously powerful Taoist hermit who never dies by Taoist healthcare methods. Therefore, Taoists take the mind discipline called BanHwanSimSeong (返還心性: Returning Back to Original Mind Nature), which makes Taoists go ultimately toward JaGeumSeon (紫金仙) that is the original origin by changing into a saint body that is newly conceived with the vital force of TaeGeuk abandoning the existing mind and body fully. This is a unique feature of Taoism, which puts its ultimate goal onto the way of BeopShinCheongJeong (法身淸淨: Pure and Clean Nature of Buddha) that is in accord with JiDoHoiHong (至道恢弘: Getting to Wide and Big Truth).

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF