The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations-

소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-

  • Yim, Kyong Bin (College of Agriculture, Seoul National University) ;
  • Kwon, Ki Won (College of Agriculture, Seoul National University)
  • Received : 1976.11.20
  • Published : 1976.12.31

Abstract

The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

1974년(年) 천연(天然)소나무집단(集團)에 대한 유전적변이(遺傳的變異)를 분석(分析)하고져 먼저 경북(慶北) 청송군(靑松郡) 소재(所在) 주왕산(周王山)소나무림(林), 충남(忠南) 서산군(瑞山郡) 소재(所在) 안면도(安眠島) 소나무림(林), 그리고 강원도(江原道) 평창군(平昌郡) 소재(所在) 소나무림(林)을 대상(對象)으로하여 각(各) 집단(集團)에서 되도록 소면적(小面積)의 범위내(範圍內)에 서있는 소나무 개체(個體)를 각(各) 20주(株)씩 총 60주(株)를 택(擇)하여 그 모수(母樹)에 대한 형태학적(形態學的) 특성(特性)등을 조사측정(調査測定)하고 집단간(集團間)에 보이는 차이(差異) 그리고 한 집단내(集團內)에 있는 각개체수목(各個體樹木)의 형질(形質)을 조사보고(調査報告)한바 있다(제일보고문(第一報論文). 1974년(年) 가을에 가계별(家系別)로 종자(種字)을 채취(採取)하여서 가계별(家系別) 및 산지별(産地別)의 차이(差異)를 분석(分析)하고 동시(同時)에 그 종자(種字)를 파종하여서 1-0묘(苗) 및 1-1묘(苗)를 대상(對象)으로 생장인자(生長因子)에 대한 측정(測定)을 하고 그 유전력(遺傳力)을 계산(計算)해 보았다. 그밖에 엽록소함량(葉綠素含量) 또는 monoterpene등의 함량(含量)의 차이(差異)를 분석(分析)해 보았다. 종자(種字)의 형태학적(形態學的) 특성(特性)에 있어서는 집단간(集團間) 또 가계간(家系間)에 유의차(有意差)를 보이지 않는 것도 있었으나 대체(大體)로 유의차(有意差)가 인정(認定)되었다. 그리고 각형질간(各形質間)의 상관(相關)을 보았는데 구과폭(毬果幅)과 종자익(種字翼)의 폭(幅), 구과장(毬果長)과 종자익(種字翼)의 길이간(間), 그리고 구과(毬果) 생중량(生重量)과 종자중량간(種字重量間)에는 정(正)의 상관(相關)이 보였다. 묘고(苗高)와 근원경(根元徑)의 성장(成長)에 있어서는 가계간(家系間) 그리고 집단간(集團間)에 차이(差異)가 인정되었다. 묘고(苗高)의 유전력(遺傳力)은 집단(集團)의 평균치(平均値)를 가지고 분석(分析)하였다. 즉 집단(集團)에 관계(關係)되는 분산(分散)을 유전분산(遺傳分散)으로 보고서 유전력(遺傳力)을 계산(計算)해 보았는데 1-0묘(苗)의 묘고(苗高)에서는 0.29, 1-1묘(苗)에서는 0.14가 그리고 근원경(根元徑)에 있어서는 1-0묘(苗)는 0.15, 1-1묘(苗)에서는 0.06이였다. 기공열수(氣孔列數)에 있어서는 집단간차이(集團間差異)가 있었으나 거치밀도(鋸齒密度)에는 차이(差異)가 없었다. 침엽(針葉)의 특성(特性)에 관(關)해서는 모수(母樹)와 차대간(次代間)에 상관(相關)이 없었다. 엽록소함량(葉綠素含量)은 집단간차이(集團間差異)는 보였으나 가계간차이(家系間差異)는 없었다. monoterpene의 성분(成分)에 있어서는 myrcene과 ${\beta}$-phellandrene의 함량(含量)으로 집단차(集團差)를 볼 수 있었다.

Keywords