• Title/Summary/Keyword: Chemical process industry

Search Result 681, Processing Time 0.029 seconds

Depolymerization of Kraft Lignin over a Ru-Mg-Al-oxide Catalyst (Ru-Mg-Al-oxide 촉매 상에서 크라프트 리그닌의 저분자화 연구)

  • Kim, Han Ung;Limarta, Susan Olivia;Jae, Jungho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.190-197
    • /
    • 2021
  • Kraft lignin is a by-product of the pulp and paper industry, obtained as a black liquor after the extraction of cellulose from wood through the Kraft pulping process. Right now, kraft lignin is utilized as a low-grade boiler fuel to provide heat and power but can be converted into high-calorific biofuels or high-value chemicals once the efficient catalytic depolymerization process is developed. In this work, the multi-functional catalyst of Ru-Mg-Al-oxide, which contains hydrogenation metals, acid, and base sites for the effective depolymerization of kraft lignin are prepared, and its lignin depolymerization efficiency is evaluated. In order to understand the role of different active sites in the lignin depolymerization, the three different catalysts of MgO, Mg-Al-oxide, and Ru-Mg-Al-oxide were synthesized, and their lignin depolymerization activity was compared in terms of the yield and the average molecular weight of bio-oil, as well as the yield of phenolic monomers contained in the bio-oil. Among the catalysts tested, the Ru-Mg-Al-oxide catalyst exhibited the highest yield of bio-oil and phenolic monomers due to the synergy between active sites. Furthermore, in order to maximize the extent of lignin depolymerization over the Ru-Mg-Al-oxide, the effects of reaction conditions (i.e., temperature, time, and catalyst loading amount) on the lignin depolymerization were investigated. Overall, the highest bio-oil yield of 72% and the 3.5 times higher yield of phenolic monomers than that without a catalyst were successfully achieved at 350 ℃ and 10% catalyst loading after 4 h reaction time.

Effects of Current Intensity on the Reaction Efficiency and Kinetics of Gas Compound Decomposition by Electron Beam in a Continuous Flow System (연속식 흐름 가스상물질의 전자선 분해반응에서 전류 세기가 반응효율 및 kinetics에 미치는 영향)

  • Tak-Hyun Kim;Dong-Woo Kim;Sang-Hee Jo;Jieun Son;Seungho Yu;Tae-Hun Kim;Jong-Seok Park
    • Journal of Radiation Industry
    • /
    • v.18 no.3
    • /
    • pp.235-240
    • /
    • 2024
  • Electron beam technology has recently attracted attention as one of the powerful air pollution control methods. In this study, methyl mercaptan decomposition by electron beam in a continuous gas flow system was studied. To this, the effect of gas flowrate, which is one of important operating variables in the continuous gas flow electron beam process, on methyl mercaptan treatment efficiency was studied. In particular, the treatment efficiency and the reaction kinetics of methyl mercaptan decomposition were compared when calculated based on the absorbed dose and when calculated based on the current intensity of electron beam. When based on the electron beam absorbed dose, the treatment efficiency and 1st-order reaction constant increased as the gas flowrate was increased, contrary to the trends in general chemical reactions. However, when based on the current intensity, the treatment efficiency and 1st-order reaction constant increased as the gas flowrate was decreased, which can be theoretically explained. This is due to the fact that the current intensity increased as the gas flowrate was increased, resulting in improved the electron beam treatment efficiency. In conclusion, it is necessary to consider not only the absorbed dose but also the current intensity of electron beam in order to explain the results of reaction efficiencies and kinetics in the continuous flow electron beam gas treatment process.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Arrangement of Agent Holes for Enhancing Crack Propagation in Structure Demolition Process using Soundless Chemical Demolition Agents (무소음화학팽창제를 이용한 구조물 해체시 균열진전 촉진을 위한 천공홀의 배치)

  • Nam, Yunmin;Kim, Kyeongjin;Park, Sanghyun;Sohn, Dongwoo;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.683-690
    • /
    • 2015
  • For demolition of offshore facilities, traditional methods such as jackhammer and explosive methods have been often used in construction industry. However, prohibitions for use of those methods are becoming more rigorous especially in environmentally and historically sensitive areas. It was also reported that the explosive demolition method on maritime bedrock can cause a disturbance of ecosystem. For those reasons, use of soundless chemical demolition agent(SCDA) is getting the spotlight. However, researches regarding the mechanical point of SCDA have seldom performed. There is no industrial standard for use of SCDA yet. In this study, a pilot experimental study in order to measure the required expansive pressure that could be generated from SCDA was conducted. Numerical models were developed in order to estimate the required expansive pressures of SCDA for initiating cracks depending on selected key parameters. Obtained results indicate that the required pressure does not decrease linearly as increasing the hole diameter, the number of holes, and the ratio of hole-distance to hole-diameter.

Hair Strengthening Effect of Silane Coupling and Carbodiimide Chemistry (카르보디이미드 반응과 실란 커플링을 이용한 모발강화 효과)

  • Son, Seong Kil;Choi, Wonkyung;Lim, Byung Tack;Song, Sang-hun;Kang, Nae Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • Chemically damaged hair is vulnerable to external stimuli in daily life due to the weakened physical properties of the hair strand itself. The purpose of this work was to determine whether chemical conjugation between hair keratin proteins restores tensile strength and thus results inpreventing further deterioration under repeated combing. A model damaged hair tress was produced by a typical perm-process. Then, it was internally crosslinked by the bifunctional crosslinker (3-aminopropyl)triethoxysilane (APTES), via both silane coupling and carbodiimide chemistry. Physical properties, including tensile strength, Young's modulus, and plateau stress, were measured to verify the effect of internal crosslinking, and the existence of crosslinking was verified by Fourier transform infrared (FT-IR) spectroscopy. The degrees of hair breakage and split ends were evaluated by repeated combing-drying tests. Physical properties of chemically damaged hair were restored by internal crosslinking. Successful crosslinking of APTES via both silane coupling and carbodiimide chemistry was verified by FT-IR spectra. Prevention of breakage and split ends after repeated combing with heat was observed. Human hair can be weakened by chemical damage including perm-processing, so restoring such properties is a major issue in the hair care industry. This work shows that internal crosslinking of damaged hair via chemical conjugation would be a potent method to restore the healthy hair.

Monitoring of Micro Noxious Chemicals Caused by Fiber and Chemistry Industrial Wastewater on the Nakdong River Water System (낙동강 수계의 섬유 및 화학 산업폐수로부터 발생하는 미량유해화학물질의 모니터링)

  • Kim Man-Il;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.145-152
    • /
    • 2006
  • Industry development caused numerical and quantitative increase of noxious chemical substances that contain risk assessment in water resources. For use of efficient water resources a pre-treatment of contaminant source which is flowed in water resources is recognized in essential process. Therefore, the discharged water quality from discharged company began to control contaminant by total amount of pollutant in domestic. However, to estimate closely chemical substances it is not proved up to now, monitoring is very important. This study achieved a monitoring of micro noxious chemical substance by fiber and chemistry industrial wastewater inflow to examine risk assessment of the water system of Nakdong river. Chloroform was measured highest among volatile organic compounds (VOCs) that the results of water quality of influent and effluent are detected from 7 companies of study area. The other side, because measured value of detected chloroform is indefinite detection level in the same company, it is difficulty in management of water quality. However it may not be much effects of the water system of Nakdong river because these company's effluent is high treatment efficiency of chloroform (more than 88%) in sewage treatment plant. On the other hand, in the investigated results for the European Union specified priority substance that is detected to relationship influent and effluent from fiber/chemistry associated industries, these substances were not detected and domestic data was hardly referred. Therefore, data construction of continuous monitoring about this water quality may have to be achieved certainly to utilize as country policy.

Effects of Types of Catalysts and Solvents on the Water Repellency of Coating Films Prepared from MTMS and TMES (MTMS와 TMES로부터 제조된 코팅 도막의 발수성에 미치는 촉매와 용매 종류의 영향)

  • Kim, Dong Gu;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.749-757
    • /
    • 2019
  • Methyltrimethoxysilane (MTMS) and trimethylethoxysilane (TMES) as starting materials were dissolved in various types of solvents, and hydrolysis with water and polycondensation reaction were carried out using various types of catalysts to prepare non-fluorinated water-repellent coating solutions. The coating solutions were spin-coated on cold-rolled steel sheets, and thermally cured to prepare water-repellent coating films. The effect of types of catalysts and solvents on the water repellency of the resulting coating films was investigated during this process. When hydrochloric acid and nitric acid, which are strong acids, were used as catalysts, the solutions showed a white opaque state due to the aggregation of siloxane polymers. On the other hand, when acetic acid, phosphoric acid, and oxalic acid, which are weak acids, were used, they were in a stable and transparent state without precipitation. As a result, the contact angles of the coated films, prepared from hydrochloric acid and nitric acid, were $58^{\circ}$ and $92^{\circ}$, respectively, showing low water repellency. On the other hand, when acetic acid, phosphoric acid, and oxalic acid were used, the contact angles of the coated films were $101^{\circ}$, $103^{\circ}$ and $116^{\circ}$, respectively, showing high water repellency. In addition, when isopropanol and ethanol were used as solvents, phase separation occurred in the solutions due to the aggregation of siloxane polymers. On the other hand, when methanol, ethyl acetate, and methyl ethyl ketone were used as solvents, the solutions were transparent and showed a stable state without sedimentation.

Preparation of Non-Fluorinated Water Repellent Coating Films Using Methyltrimethoxysilane and Trimethylethoxysilane (Methyltrimethoxysilane과 Trimethylethoxysilane을 이용한 비불소계 발수 코팅 도막의 제조)

  • Kim, Dong Gu;Lee, Byoung Hwa;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • Non-fluorinated water repellent coating solutions were obtained using methyltrimethoxysilane (MTMS) and trimethylethoxysilane (TMES) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and cured thermally to prepare water repellent coating films. During this process, the effect of molar ratio of TMES/MTMS was studied for the hydrophobic properties of the coating films. Hydrophobic properties of coating films were characterized using contact angle measurement, surface morphology analysis and infrared spectroscopy. When the molar ratio of TMES/MTMS was varied from 0 to 30, the contact angle of the un-coated cold-rolled steel sheet was $30^{\circ}$, whereas when the molar ratio of TMES/MTMS was 1, the contact angle increased to $104^{\circ}$ and water repellency was significantly improved. In the case of TMES/MTMS molar ratios of 10, 15, 25 and 30, the contact angles of coating films showed $109^{\circ}$, $114^{\circ}$, $117^{\circ}$ and $144^{\circ}$, respectively. At this time, the hydrophobicity of the coating films was improved by the increase of the surface roughness and the content of the methyl component at the coating surface. In particular, when the molar ratio of TMES/MTMS was 30, the overall surface roughness was greatly increased due to the presence of surface particles as well as the water repellency due to methyl groups of TMES, resulting in super hydrophobicity of $144^{\circ}$.

Prediction of Chemical Organic Composition of Manure by Near Infrared Reflectance Spectroscopy

  • Amari, Masahiro;Fukumoto, Yasuyuki;Takada, Ryozo
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1265-1265
    • /
    • 2001
  • The organic materials included in excreta of livestock are important resources for organic manure and for improving soil quality, although there is still far from effective using. One reason for this is still unclearly standard of quality for evaluation of manure made from excreta of livestock. Therefore, the objective of this study is to develop rapid and accurate analytical method for analyzing organic compositions of manure made from excreta of livestock, and to establish quality evaluation method based on the compositions predicted by near infrared reflectance spectroscopy (NIRS). Sixteen samples of manure, each eight samples prepared from two treatments, were used in this study. The manure samples were prepared by mixing 560 kg feces of swine,60 kg sawdust with moisture content was adjusted to be 65%. The mixture was then keep under two kinds of shelter, black and clear sheets, as a treatment on the effect of sunlight. Samples were taken in every week (form week-0 to 7) during the process of manure making. Samples were analyzed to determine neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) by detergent methods, and organic cell wall (OCW) and fibrous content of low digestibility in OCW (Ob) by enzymatic methods. Biological oxygen demand (BOD) was analyzed by coulometric respirometer method. These compositions were carbohydrateds and lignin that were hardly digested. Spectra of samples were scanned by NIR instrument model 6500 (Pacific Scientific) and read over the range of wavelength between 400 and 2500nm. Calibration equations were developed using eight manure samples collected from black sheet shelter, while prediction was conducted to the other eight samples from clear sheet shelter. Accuracy of NTRS prediction was evaluated by correlation coefficients (r), standard error of prediction (SEP) and ration of standard deviation of reference data in prediction sample set to SEP (RPD). The r, SEP and RPD value of forage were 0.99, 0.69 and 7.6 for ADL, 0.96, 1.03 and 4.1 for NDF, 0.98, 0.60 and 4.9 for ADF, 0.92, 1.24 and 2.6 for Ob, and 0.91, 1.02 and 7.3 for BOD, respectively. The results indicated that NIRS could be used to measure the organic composition of forage used in manure samples.

  • PDF

Effects of variety, region and season on near infrared reflectance spectroscopic analysis of quality parameters in red wine grapes

  • Esler, Michael B.;Gishen, Mark;Francis, I.Leigh;Dambergs, Robert G.;Kambouris, Ambrosias;Cynkar, Wies U.;Boehm, David R.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1523-1523
    • /
    • 2001
  • The wine industry requires practical methods for objectively measuring the composition of both red wine grapes on the vine to determine optimal harvest time; and of freshly harvested grapes for efficient allocation to vinery process streams for particular red wine products, and to determine payment of contract grapegrowers. To be practical for industry application these methods must be rapid, inexpensive and accurate. In most cases this restricts the analyses available to measurement of TSS (total soluble solids, predominantly sugars) by refractometry and pH by electropotentiometry. These two parameters, however, do not provide a comprehensive compositional characterization for the purpose of winemaking. The concentration of anthocyanin pigment in red wine grapes is an accepted indicator of potential wine quality and price. However, routine analysis for total anthocyanins is not considered as a practical option by the wider wine industry because of the high cost and slow turnaround time of this multi-step wet chemical laboratory analysis. Recent work by this ${group}^{l,2}$ has established the capability of near infrared (NIR) spectroscopy to provide rapid, accurate and simultaneous measurement of total anthocyanins, TSS and pH in red wine grapes. The analyses may be carried out equally well using either research grade scanning spectrometers or much simpler reduced spectral range portable diode-array based instrumentation. We have recently expanded on this work by collecting thousands of red wine grape samples in Australia. The sample set spans two vintages (1999 and 2000), five distinct geographical winegrowing regions and three main red wine grape varieties used in Australia (Cabernet Sauvignon, Shiraz and Merlot). Homogenized grape samples were scanned in diffuse reflectance mode on a FOSE NIR Systems6500 spectrometer and subject to laboratory analysis by the traditional methods for total anthocyanins, TSS and pH. We report here an analysis of the correlations between the NIR spectra and the laboratory data using standard chemometric algorithms within The Unscrambler software package. In particular, various subsets of the total data set are considered in turn to elucidate the effects of vintage, geographical area and grape variety on the measurement of grape composition by NIR spectroscopy. The relative ability of discrete calibrations to predict within and across these differences is considered. The results are then used to propose an optimal calibration strategy for red wine grape analysis.

  • PDF