DOI QR코드

DOI QR Code

Depolymerization of Kraft Lignin over a Ru-Mg-Al-oxide Catalyst

Ru-Mg-Al-oxide 촉매 상에서 크라프트 리그닌의 저분자화 연구

  • Kim, Han Ung (School of Chemical Engineering, Pusan National University) ;
  • Limarta, Susan Olivia (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Jae, Jungho (School of Chemical Engineering, Pusan National University)
  • Received : 2021.05.17
  • Accepted : 2021.06.05
  • Published : 2021.06.30

Abstract

Kraft lignin is a by-product of the pulp and paper industry, obtained as a black liquor after the extraction of cellulose from wood through the Kraft pulping process. Right now, kraft lignin is utilized as a low-grade boiler fuel to provide heat and power but can be converted into high-calorific biofuels or high-value chemicals once the efficient catalytic depolymerization process is developed. In this work, the multi-functional catalyst of Ru-Mg-Al-oxide, which contains hydrogenation metals, acid, and base sites for the effective depolymerization of kraft lignin are prepared, and its lignin depolymerization efficiency is evaluated. In order to understand the role of different active sites in the lignin depolymerization, the three different catalysts of MgO, Mg-Al-oxide, and Ru-Mg-Al-oxide were synthesized, and their lignin depolymerization activity was compared in terms of the yield and the average molecular weight of bio-oil, as well as the yield of phenolic monomers contained in the bio-oil. Among the catalysts tested, the Ru-Mg-Al-oxide catalyst exhibited the highest yield of bio-oil and phenolic monomers due to the synergy between active sites. Furthermore, in order to maximize the extent of lignin depolymerization over the Ru-Mg-Al-oxide, the effects of reaction conditions (i.e., temperature, time, and catalyst loading amount) on the lignin depolymerization were investigated. Overall, the highest bio-oil yield of 72% and the 3.5 times higher yield of phenolic monomers than that without a catalyst were successfully achieved at 350 ℃ and 10% catalyst loading after 4 h reaction time.

펄프 및 제지산업에서 목재의 셀룰로오스 성분 활용 후 남는 부산물인 크라프트 리그닌(kraft lignin)은 촉매적 저분자화 공정을 통해 바이오연료나 고부가가치 페놀 단량체로 전환될 수 있다. 본 연구에서는 크라프트 리그닌의 효율적인 저분자화를 위한 촉매로 수소화 금속 및 산-염기점을 동시에 지니는 Ru-Mg-Al-oxide 복합 촉매를 제조하고, 리그닌 분해 성능을 평가하고자 하였다. 촉매 내 다양한 활성점들(산점, 염기점, 수소화 금속)이 리그닌 분해 반응에 미치는 영향을 파악하기 위해 MgO, Mg-Al-oxide, Ru-Mg-Al-oxide의 세 가지 촉매를 제조하여 초임계 에탄올 용매 상에서 리그닌 분해 반응을 수행하였고, 리그닌 분해 성능은 바이오오일(bio-oil) 수율 및 분자량, 그리고 페놀계 단량체 수율을 통해 평가하였다. 그 결과, Ru-Mg-Al-oxide 촉매가 다양한 활성점들의 시너지 효과로 인해 가장 높은 수율의 바이오오일 및 페놀 단량체들을 생산한다는 것을 확인하였다. Ru-Mg-Al-oxide 촉매 상에서 분해 효율을 최적화하기 위해 다양한 반응 조건(온도, 시간, 촉매양)에 따른 분해 효율을 평가하였고, 최종적으로 반응온도 350 ℃, 리그닌 대비 촉매 비율 10%, 4 h 반응을 통해 72%의 높은 바이오오일 수율과 무촉매 대비 3.5배 이상 증가한 페놀 단량체를 생산할 수 있었다.

Keywords

Acknowledgement

본 연구는 2018학년도 부산대학교 교내학술연구비(신임교수 연구정착금)에 의한 연구임.

References

  1. Ha, J.-M., Hwang, K.-R., Kim, Y.-M., Jae, J., Kim, K. H., Lee, H. W., Kim, J.-Y., and Park, Y.-K., "Recent Progress in the Thermal and Catalytic Conversion of Lignin," Renew. Sust. Energ. Rev., 111, 422-441 (2019). https://doi.org/10.1016/j.rser.2019.05.034
  2. Bbosa, D., Mba-Wright, M., and Brown, R. C., "More than Ethanol: A Techno-Economic Analysis of a corn Stover-Ethanol Biorefinery Integrated with a Hydrothermal Liquefaction Process to Convert Lignin into Biochemicals," Biofuel Bioprod. Biorefin., 12(3), 497-509 (2018). https://doi.org/10.1002/bbb.1866
  3. Li, C., Zhao, X., Wang, A., Huber, G. W., and Zhang, T., "Catalytic Transformation of Lignin for the Production of Chemicals and Fuels," Chem. Rev., 115(21), 11559-11624 (2015). https://doi.org/10.1021/acs.chemrev.5b00155
  4. Roberts, V. M., Stein, V., Reiner, T., Lemonidou, A., Li, X., and Lercher, J. A., "Towards Quantitative Catalytic Lignin Depolymerization," Chem. Eur. J., 17(21), 5939-5948 (2011). https://doi.org/10.1002/chem.201002438
  5. Kristianto, I., Limarta, S. O., Lee, H., Ha, J.-M., Suh, D. J., and Jae, J., "Effective Depolymerization of Concentrated Acid Hydrolysis Lignin Using a Carbon-Supported Ruthenium Catalyst in Ethanol/Formic Acid Media," Bioresour. Technol., 234, 424-431 (2017). https://doi.org/10.1016/j.biortech.2017.03.070
  6. Chu, S., Subrahmanyam, A. V., and Huber, G. W., "The Pyrolysis Chemistry of a β-O-4 type Oligomeric Lignin Model Compound," Green Chem., 15(1), 125-136 (2013). https://doi.org/10.1039/C2GC36332A
  7. Van den Bosch, S., Renders, T., Kennis, S., Koelewijn, S. F., Van den Bossche, G., Vangeel, T., Deneyer, A., Depuydt, D., Courtin, C. M., Thevelein, J. M., Schutyser, W., and Sels, B. F., "Integrating Lignin Valorization and Bio-Ethanol Production: on the Role of Ni-Al2O3 Catalyst Pellets During Lignin-First Fractionation," Green Chem., 19(14), 3313-3326 (2017). https://doi.org/10.1039/c7gc01324h
  8. Limarta, S. O., Ha, J.-M., Park, Y.-K., Lee, H., Suh, D. J., and Jae, J., "Efficient Depolymerization of Lignin in Supercritical Ethanol by a Combination of Metal and Base Catalysts," J. Ind. Eng. Chem., 57, 45-54 (2018). https://doi.org/10.1016/j.jiec.2017.08.006
  9. Kim, J.-Y., Park, S. Y., Choi, I.-G., and Choi, J. W., "Evaluation of RuxNi1-x/SBA-15 Catalysts for Depolymerization Features of Lignin Macromolecule into Monomeric Phenols," Chem. Eng. J., 336, 640-648 (2018). https://doi.org/10.1016/j.cej.2017.11.118
  10. Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., and Xu, J., "Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process," Energy Environ. Sci., 6(3), 994-1007 (2013). https://doi.org/10.1039/c2ee23741e
  11. Kim, M., Son, D., Choi, J.-W., Jae, J., Suh, D. J., Ha, J.-M., and Lee, K.-Y., "Production of Phenolic Hydrocarbons Using Catalytic Depolymerization of Empty Fruit Bunch (Efb)-Derived Organosolv Lignin on Hβ-supported Ru," Chem. Eng. J., 309, 187-196 (2017). https://doi.org/10.1016/j.cej.2016.10.011
  12. Shuai, L., and Saha, B., "Towards High-Yield Lignin Monomer Production," Green Chem., 19(16), 3752-3758 (2017). https://doi.org/10.1039/c7gc01676j
  13. Kloekhorst, A., Shen, Y., Yie, Y., Fang, M., and Heeres, H. J., "Catalytic Hydrodeoxygenation and Hydrocracking of Alcell® Lignin In Alcohol/Formic Acid Mixtures Using a Ru/C Catalyst," Biomass Bioenergy, 80, 147-161 (2015). https://doi.org/10.1016/j.biombioe.2015.04.039
  14. Huang, X., Koranyi, T. I., Boot, M. D., and Hensen, E. J., "Catalytic Depolymerization of Lignin in Supercritical Ethanol," ChemSusChem, 7(8), 2276-2288 (2014). https://doi.org/10.1002/cssc.201402094
  15. Huang, X., Atay, C., Koranyi, T. I., Boot, M. D., and Hensen, E. J. M., "Role of Cu-Mg-Al Mixed Oxide Catalysts in Lignin Depolymerization in Supercritical Ethanol," ACS Catal., 5(12), 7359-7370 (2015). https://doi.org/10.1021/acscatal.5b02230
  16. Huang, X., Koranyi, T. I., Boot, M. D., and Hensen, E. J., "Ethanol as Capping Agent and Formaldehyde Scavenger for Efficient Depolymerization of Lignin to Aromatics," Green Chem., 17(11), 4941-4950 (2015). https://doi.org/10.1039/C5GC01120E
  17. Limarta, S. O., Kim, H., Ha, J.-M., Park, Y.-K., and Jae, J., "High-quality and Phenolic Monomer-Rich Bio-Oil Production from Lignin in Supercritical Ethanol Over Synergistic Ru and Mg-Zr-oxide Catalysts," Chem. Eng. J., 396, 125175 (2020). https://doi.org/10.1016/j.cej.2020.125175