DOI QR코드

DOI QR Code

Effects of Types of Catalysts and Solvents on the Water Repellency of Coating Films Prepared from MTMS and TMES

MTMS와 TMES로부터 제조된 코팅 도막의 발수성에 미치는 촉매와 용매 종류의 영향

  • Kim, Dong Gu (Department of Biomedical Materials, Konyang University) ;
  • Lee, Byung Wha (Research Institute of Daeheung Chemical Industry Co.) ;
  • Song, Ki Chang (Department of Biomedical Materials, Konyang University)
  • 김동구 (건양대학교 의료신소재학과) ;
  • 이병화 (대흥화학공업(주) 기술연구소) ;
  • 송기창 (건양대학교 의료신소재학과)
  • Received : 2019.06.29
  • Accepted : 2019.08.21
  • Published : 2019.12.01

Abstract

Methyltrimethoxysilane (MTMS) and trimethylethoxysilane (TMES) as starting materials were dissolved in various types of solvents, and hydrolysis with water and polycondensation reaction were carried out using various types of catalysts to prepare non-fluorinated water-repellent coating solutions. The coating solutions were spin-coated on cold-rolled steel sheets, and thermally cured to prepare water-repellent coating films. The effect of types of catalysts and solvents on the water repellency of the resulting coating films was investigated during this process. When hydrochloric acid and nitric acid, which are strong acids, were used as catalysts, the solutions showed a white opaque state due to the aggregation of siloxane polymers. On the other hand, when acetic acid, phosphoric acid, and oxalic acid, which are weak acids, were used, they were in a stable and transparent state without precipitation. As a result, the contact angles of the coated films, prepared from hydrochloric acid and nitric acid, were $58^{\circ}$ and $92^{\circ}$, respectively, showing low water repellency. On the other hand, when acetic acid, phosphoric acid, and oxalic acid were used, the contact angles of the coated films were $101^{\circ}$, $103^{\circ}$ and $116^{\circ}$, respectively, showing high water repellency. In addition, when isopropanol and ethanol were used as solvents, phase separation occurred in the solutions due to the aggregation of siloxane polymers. On the other hand, when methanol, ethyl acetate, and methyl ethyl ketone were used as solvents, the solutions were transparent and showed a stable state without sedimentation.

Methyltrimethoxysilane (MTMS)과 trimethylethoxysilane (TMES)을 출발물질로 사용하여 여러 종류의 용매에 용해시킨 후 다양한 종류의 촉매를 사용해 물과의 가수분해 및 중축합반응을 진행시켜 비불소계 발수 코팅 용액을 제조하였다. 또한 이 코팅 용액을 냉연 강판 위에 스핀 코팅하고 열 경화시켜 발수 코팅 도막을 제조 하였다. 이 과정 중 촉매와 용매의 종류 변화가 생성된 코팅 도막의 발수성에 미치는 영향을 연구하였다. 강산인 염산과 질산을 촉매로 사용한 경우에는 용액 내에 siloxane polymer들의 응집이 발생한 흰색의 불투명 상태를 나타냈다. 반면에 약산인 아세트산, 인산과 옥살산을 사용한 경우에는 투명하고 침전이 없는 안정한 용액 상태를 보였다. 이로 인해 강산인 염산과 질산을 사용한 경우의 코팅 도막의 접촉각은 각각 $58^{\circ}$$92^{\circ}$로 낮은 발수성을 보인 반면에 약산인 아세트산, 인산과 옥살산으로 제조된 경우에는 각각 $101^{\circ}$, $103^{\circ}$, $116^{\circ}$의 접촉각을 보여 높은 발수성을 나타내었다. 또한 이소프로판올과 에탄올을 용매로 사용한 경우에는 용액 내에서 siloxane polymer들의 응집이 일어나 불투명한 침전이 발생한 상분리 현상을 보인 반면 메탄올, 에틸아세테이트와 메틸에틸케톤을 용매로 사용한 경우에는 투명하고 침전이 없는 안정된 상태를 나타내었다.

Keywords

References

  1. Park, K. C., "Leveling of Aged Low Carbon Steel Sheets In Order To Prevent Shape Defects After Stamping," Transactions of Materials Processing, 24(4), 241-247(2015). https://doi.org/10.5228/KSTP.24.4.241
  2. Kim, D. G., Lee, B. H. and Song, K. C., "Preparation of Non-Fluorinated Water Repellent Coating Films Using Methyltrimethoxysilane and Trimethylethoxysilane," Korean Chem. Eng. Res., 57(2), 177-184(2019).
  3. Lv, C., Wang, H., Liu, Z., Wang, C., Li, H., Zhao, Y. and Zhu, Y., "A Fluorine-free Superhydrophobic PPS Composite Coating with High Thermal Stability, Wear Resistance, Corrosion Resistance," Progress in Organic Coatings, 110, 47-54(2017). https://doi.org/10.1016/j.porgcoat.2017.04.049
  4. Kim, T. K., Kang, H. J. and Park, J. H., "Synthesis of Non-fluorinated Polystearyl Methacrylate Water Repellent and Its Properties on Textile Fibers," Textile Coloration and Finishing, 29(2), 55-61(2017). https://doi.org/10.5764/TCF.2017.29.2.55
  5. Kim, D. G., Lee, B. W. and Song, K. C., "Preparation of Water-Repellent Coating Solution from Tetraethoxysilane and Methyltriethoxysilane by Sol-Gel Method," Korean Chem. Eng. Res., 56(3), 327-334(2018). https://doi.org/10.9713/KCER.2018.56.3.327
  6. Park, J. H., Lee, B. W. and Song, K. C., "Preparation of Water-Repellent Coating Films from Tetraethoxysilane and Chlorotrimethylsilane on PMMA Substrates," Korean Chem. Eng. Res., 57(1), 124-132(2019).
  7. ASTM D 3359, "Standard Test Methods for Measuring Adhesion by Tape Test," ASTM International, 927-929(1997).
  8. Kuo, C. F. J., Chen, J. B., Shih, C. Y. and Huang, C. Y., "Silicon Resin Synthesized by Tetraethoxysilane and Chlorotrimethylsilane Through Hydrolysis-Condensation Reaction," J. Appl. Polym. Sci., 131(11), 40317(2014).
  9. Malay, O., Yilgor, I. and Menceloglu, Y. Z., "Effects of Solvent on TEOS Hydrolysis Kinetics and Silica Particle Size Under Basic Conditions," J. Sol-Gel Sci. Technol., 67(2), 351-361(2013). https://doi.org/10.1007/s10971-013-3088-4
  10. http://www.clearcoproducts.com/pdf/library/Solubility1.pdf.