• Title/Summary/Keyword: Chemical phenomena

Search Result 702, Processing Time 0.027 seconds

Synthesis of Zeolite from the Mixtures of Aluminosilicate Gel and Activated Carbon (알루미노 실리케이트 겔과 활성탄 혼합물상에서의 제올라이트 합성)

  • Park, Jeong-Hwan;Suh, Jeong-Kwon;Jeong, Soon-Yong;Lee, Jung-Min;Doh, Myung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.615-618
    • /
    • 1998
  • The zeolite crystals were synthesized by hydrogel process into the pore of activated carbon. The effect of activated carbon in the course of the crystallization of zeolite was investigated. The phenomena of impregnation of zeolite crystals into the pore of the activated carbon were also examined. The results show that in case of the addition of 5% of activated carbon to the aluminosilicate gel including the mole composition of zeolite A, zeolite A was purely synthesized without the existence of other type of zeolite. However, in case of the addition of 20% of activated carbon, zeolite X was purely synthesized. In the pore mouth and internal of activated carbon, zeolite crystals having the size under $1{\mu}m$ was observed. From the results of the pore size and particle size distributions, it was confirmed that the synthetic sample was the composite material impregnated by the zeolite crystals into the pore of activated carbon, not the simple mixture of zeolite and activated carbon.

  • PDF

Electrophoretic Characteristics of the Clay Particles Affected by Chemical Species of Leachate (매립지 침출수 화학종에 따른 점토입자의 전기영동 특성)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam;Park, Jea-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.217-228
    • /
    • 2009
  • In case of application of electrophoresis method for leakage restoration of waste impoundment, main points of consideration were to evaluate the mobility of clay particles by electrophoretic force and capacity of leakage repair in leachate electrolyte system contained with various chemical species. However, the flocculation phenomena of clay particles induced by electrochemical interaction between various chemical species and clay particles would cause the big problems in electrophoresis method. Therefore, a series of laboratory tests such as one-dimensional electrophoresis and gravitational experiments were carried out in order to identify the specific chemical species affected flocculation of clay particles and the range of chemical concentration in leachate. In addition, the characteristics of clay particle behavior with chemical species and concentration range in leachate were analized using the concept of the settling velocity, zeta potential, and electrophoretic velocity.

Analysis of the petrological characteristics and deterioration phenomena of the rocks consisting the Gwangtonggyo(bridge) on the Cheonggyecheon(river) (광통교 구성암석의 석질 및 훼손양상 분석 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.39-56
    • /
    • 2005
  • The Gwangtonggyo(bridge) on the Cheonggyecheon(river) is mainly composed of biotite granite with coarse grain. The rock consists mainly of quartz, plagioclase, microcline, orthoclase and biotite with lesser amount of muscovite, sericite and chlorite. Muscovite and sericite may be formed from feldspars and chlorite from biotite by alteration(including weathering). These rocks are relatively deteriorated by weathering, polluted water running the river and heavy traffic. The main phenomena of damages are surface exfoliation, grain separation, deceleration, pollution of organic and heavy chemical elements, cracks and breakage. These phenomena have been analyzed by polarized microscope, XRD and SEM/EDX. The analyzed results show organic pollution and secondarily formed gypsum and apatite on the rock surface and micro-pores. NaCl and $CaCO_3$ as rock salt and calcite probably may be formed secondarily in some points. Also heavy chemical elements such as Cr, Pb, Pd, W, La, Zn and Nd are polluted in some samples. The contacts between rocks are generally breakdown in small scale or cracks are developed due to mainly load and vibration shock of heavy traffic.

  • PDF

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis (PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조)

  • Lee, Hyuck-Jae;Jung, Yun-Kyo;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

Crystallization of Benzene from Benzene-Cyclohexane Mixtures by Layer Melt Crystallization - Phenomena of Impurity Inclusion in Crystal - (경막형 용융결정화에 의한 벤젠-사이클로헥산 혼합물로부터 벤젠의 결정화-결정의 불순물 내포현상-)

  • Kim, Kwang-Joo;Lee, Jung-Min;Ryu, Seung-Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.389-394
    • /
    • 1997
  • The distribution of impurity included in benzene layer crystal was explored in layer crystallization of cyclohexane and benzene mixtures. The influence of crystal growth rate on crystal purity was investigated. All experimental results for bezene-cyclohexane system obtained in layer crystallizer have been evaluated with the criterion of Wintermantel. The purity of crystal decreases with increasing degree of subcooling, decreasing feed concentration and increasing crystal growth rate. The crystal growth rate was a key parameter to determine the inclusion of impurity in crystals. The results obtained from runs performed at increasing crystallization time(i.e. crystal thickness) have clearly shown that migration of inclusions within crystal layer to the melt, leading to the removal of impurity occurs. The diffusion of impurity which takes place during the crystallization from the beginning, enhances a further purification of the crystal layer if that underwent a thermal gradient after growth of the layer crystal stops.

  • PDF

The Chacteristics of Resonant Resistance Change of the Piezoelectric Quartz Crystal Depending on the Polymer Polarity (고분자의 극성에 따른 수정진동자 공진저항의 변화 특성)

  • Park, Ji Sun;Park, Jung Jin;Lee, Sang Rok;Chang, Sang Mok;Kim, Jong Min
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2007
  • We have demonstrated the resonant resistance pattern changes of the polymer film in the quartz crystal analysis by the function of the molecular polarity phase transition phenomena. PVA and PMMA/PVAc blend films were used as hydrophilic and/or hydrophbic film, respectively. In the comparison between the hydrophilic shows the pattern changes near by the phase transition temperature. For more detailed explanation, the static capacity in the oscillation parameter was measured and the morphology of Au quartz crystal electrode was studied by AFM. It is suggested that the different resonant resistance pattern change is reliable in the condition of different polarity, and the conclusion is important to analysis of the real mechanism a normal quartz crystal experiments.

Multiscale Modeling and Simulation of Water Gas Shift Reactor (Water Gas Shift Reactor의 Multiscale 모델링 및 모사)

  • Lee, Ukjune;Kim, Kihyun;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • In view of the analysis of the phenomena and the prediction of the performance, mathematical modelling and simulation of a high temperature pilot reactor for water gas shift reaction (WGSR) has been carried out. Multiscale simulation incorporated computational fluid dynamics (CFD) technique, which has the capability to deal with the reactor shape, fluid and energy transport with extensive degree of accuracy, and process modeling technique, which, in turn is responsible for reaction kinetics and mass transport. This research employed multiscale simulation and the results were compared with those from process simulation. From multiscale simulation, the maximum conversion of was predicted approximately 0.85 and the maximum temperature at the reactor was calculated 720 K, resulting from the heat of reaction. Dynamic simulation was also performed for the time transient profile of temperature, conversion, etc. Considering the results, it is concluded that multiscale simulation is a safe and accurate technique to predict reactor behaviors, and consequently will be available for the design of commercial size chemical reactors as well as other commercial unit operations.

Reliability Analysis of SiGe pMOSFETs Formed on PD-SOI (PD-SOI기판에 제작된 SiGe p-MOSFET의 신뢰성 분석)

  • Choi, Sang-Sik;Choi, A-Ram;Kim, Jae-Yeon;Yang, Jeon-Wook;Han, Tae-Hyun;Cho, Deok-Ho;Hwang, Young-Woo;Shim, Kyu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.533-533
    • /
    • 2007
  • The stress effect of SiGe p-type metal oxide semiconductors field effect transistors(MOSFETs) has been investigated to compare device properties using Si bulk and partially depleted silicon on insulator(PD SOI). The electrical properties in SiGe PD SOI presented enhancements in subthreshold slope and drain induced barrier lowering in comparison to SiGe bulk. The reliability of gate oxides on bulk Si and PD SOI has been evaluated using constant voltage stressing to investigate their breakdown (~ 8.5 V) characteristics. Gate leakage was monitored as a function of voltage stressing time to understand the breakdown phenomena for both structures. Stress induced leakage currents are obtained from I-V measurements at specified stress intervals. The 1/f noise was observed to follow the typical $1/f^{\gamma}$ (${\gamma}\;=\;1$) in SiGe bulk devices, but the abnormal behavior ${\gamma}\;=\;2$ in SiGe PD SOI. The difference of noise frequency exponent is mainly attributed to traps at silicon oxide interfaces. We will discuss stress induced instability in conjunction with the 1/f noise characteristics in detail.

  • PDF

Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles (나노입자 자기조립 단일층을 이용한 유기메모리 소자)

  • Jung, Hunsang;Oh, Sewook;Kim, Yejin;Kim, Minkeun;Lee, Hyun Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.

Dynamics Transition of Electroconvective Instability Depending on Confinement Effect (공간 제약 효과에 따른 전기와류 불안정성의 동역학 전이)

  • Lee, Seungha;Hyun, Cheol Heon;Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.626-631
    • /
    • 2021
  • One of the nonlinear electrokinetic phenomena around ion exchange membrane is electroconvective instability which can be found in various electrokinetic applications such as electrodialysis, electrochemical battery, microfluidic analysis platform, etc. Such instability acts as a positive transport mechanism for the electrodialysis via amplifying mass transport rate. On the other hands, in the electrochemical battery and the microfluidic applications, the instability provokes unwanted mass transport. In this research, to control the electroconvective instability, the onset of the instability was analyzed as a function of confinement effect as well as applied voltage. As a result, we figured out that the dynamic behavior of electroconvective instability transited as a sequence of stable regime - static regime - chaotic regime depending on the applied voltage and confinement effect. Furthermore, stability curves about the dynamic transition were numerically determined as well. Conclusively, the confinement effect on electroconvective instability can be applied for effective means to control the electrokinetic chaos.