Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles

나노입자 자기조립 단일층을 이용한 유기메모리 소자

  • Jung, Hunsang (Department of Chemical Engineering, Myongji University) ;
  • Oh, Sewook (Department of Chemical Engineering, Myongji University) ;
  • Kim, Yejin (Department of Chemical Engineering, Myongji University) ;
  • Kim, Minkeun (Department of Chemical Engineering, Myongji University) ;
  • Lee, Hyun Ho (Department of Chemical Engineering, Myongji University)
  • Published : 2012.12.10

Abstract

In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.

이 총설에서는 개별인식 태그와 바이오센서 등에 사용가능성이 높은 실리콘 기반의 캐패시터와 유기 박막트랜지스터 소자의 제작과 차이점이 논하여 진다. 금속이나 혹은 비금속의 나노입자는 화학물질이나 혹은 바이오분자, 즉, 단백질과 올리고 DNA 등에 표면이 싸여질 수 있으며, 상응하는 목표 바이오분자가 결합되어져 있는 절연체에 자기조립 단일층을 형성할 수 있다. 단일층으로 형성된 나노입자는 정전하 기본단위로서 유기 메모리 소자의 나노 플로팅 게이트로서 역할을 하는 것이다. 특히, 바이오분자의 선택적이고 강한 결합 메카니즘을 통하여도, 메모리 캐패시터나 유기 메모리 박막트랜지스터가 성공적으로 시연되었다. 더불어, 이러한 유기 메모리 소자는 차후 유연기판의 유기전자소자 영역의 발전을 촉진할 것으로 기대된다. 또한, 유기 메모리 박막트랜지스터는 앞으로 새로운 개념의 소자로의 적용이 가능하다.

Keywords

References

  1. S.-J. Kim, and J.-S. Lee, Nano Lett., 10, 2884 (2010). https://doi.org/10.1021/nl1009662
  2. S. Wang, C.-W. Leung, and P. K. L. Chan, Organ. Elect., 11. 990 (2010). https://doi.org/10.1016/j.orgel.2010.03.020
  3. S. Paul, C. Pearson, A. Molloy, M. A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, and M. C. Petty, Nano Lett., 3, 533 (2003). https://doi.org/10.1021/nl034008t
  4. H.-J. Kim, S. M. Jung, B.-J. Kim, T.-S. Yoon, Y.-S. Kim, and H. H. Lee, J. Ind. Eng. Chem., 16, 848 (2010). https://doi.org/10.1016/j.jiec.2010.03.021
  5. B.-J. Kim, H.-J. Kim, S. M. Jung, Y.-H. Kim, S. Ha, T.-S. Yoon, and H. H. Lee, Thin Sol. Film, 519, 4319 (2011). https://doi.org/10.1016/j.tsf.2011.02.035
  6. Y. H. Kim, S. M. Jung, T. S. Yoon, Y. S. Kim, and H. H. Lee, Electrochem. Solid-St. Lett., 14, H149 (2011). https://doi.org/10.1149/1.3544488
  7. Y. H. Kim, S. M. Jung, Q. Hu, Y.-S. Kim, T.-S. Yoon, and H. H. Lee, J. Nanotechnol. Nanosci., 11, 6044 (2011). https://doi.org/10.1166/jnn.2011.4370
  8. Y. Kim, M. Kim, S. Oh, H. Jung, Y. Kim, and H. H. Lee, Appl. Phys. Lett., 100, 163301 (2012). https://doi.org/10.1063/1.4704571
  9. C. W. Chu, J. Ouyang, J.-H. Tseng, and Y. Yang, Adv. Mater., 17, 1440 (2005). https://doi.org/10.1002/adma.200500225
  10. S. Song, B. Cho, T.-W. Kim, Y. Ji, M. Jo, G. Wang, M. Choe, Y. H. Kahng, H. Hwang, and T. Lee, Adv. Mater., 22, 5048 (2010). https://doi.org/10.1002/adma.201002575
  11. R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc., 105, 4481 (1983). https://doi.org/10.1021/ja00351a063
  12. C. D. Bain and G. M. Whitesides, Science, 240, 62 (1988). https://doi.org/10.1126/science.240.4848.62
  13. P. E. Laibinis, J. J. Hickman, M. S. Wrighton, and G. M. Whitesides, Science, 245, 845 (1989). https://doi.org/10.1126/science.245.4920.845
  14. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  15. S. K Arya, P. R. Solanki, M. Datta, and B. D Malhotra, Biosens. Bioelectron, 24, 2810 (2009). https://doi.org/10.1016/j.bios.2009.02.008
  16. H. McNally, M. Pingle, S. W. Lee, D. Guo, D. E. Bergstrom, and R. Bashir, Appl. Surf. Sci., 214, 109 (2003). https://doi.org/10.1016/S0169-4332(03)00266-6
  17. A. Miura, R. Tsukamato, S. Yoshii, I. Yamashita, Y. Uraoka, and T. Fuyuki, Nanotechnol., 19, 255201 (2008). https://doi.org/10.1088/0957-4484/19/25/255201
  18. N. A. Lapin and Y. J. Chabal, J. Phys. Chem. B, 113, 8776 (2009). https://doi.org/10.1021/jp809096m
  19. S. M. Jung, H. -J. Kim, B. -J. Kim, T. -S. Yoon, Y. -S. Kim, and H. H. Lee, Appl. Phys. Lett., 97, 153302 (2010). https://doi.org/10.1063/1.3500824
  20. R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, and C. S. Ozkan, Nature Nanotechnol., 1, 72 (2006). https://doi.org/10.1038/nnano.2006.55
  21. N. G. Portney, A. A. Martinez-Morales, and M. Ozkan, ACS Nano, 2, 191 (2008). https://doi.org/10.1021/nn700240z
  22. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Nano Lett., 4, 245 (2004). https://doi.org/10.1021/nl034958e
  23. S.-W. Ryu, C.-H. Kim, J.-W. Han, C.-J. Kim, C. Jung, H. G. Park, and Y.-K. Choi, Biosens. Bioelectron., 25, 2182 (2010). https://doi.org/10.1016/j.bios.2010.02.010
  24. C.-H. Kim, C. Jung, K.-B Lee, H. G. Park, and Y.-K. Choi, Nanotechnol., 22, 135502 (2011). https://doi.org/10.1088/0957-4484/22/13/135502
  25. K.-M. Song, S. Lee, and C. Ban, Sensors, 12, 612 (2012). https://doi.org/10.3390/s120100612