Acknowledgement
이 논문은 2020년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.
References
- Kwak, R., Pham, V. S., Lim, K. M. and Han, J., "Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices," Phys. Rev. Lett., 110, 114501(2013). https://doi.org/10.1103/physrevlett.110.114501
- Bai, P., Li, J., Brushett, F. R. and Bazant, M. Z., "Transition of Lithium Growth Mechanisms in Liquid Electrolytes," Energy & Environmental Science, 9, 3221-3229(2016). https://doi.org/10.1039/c6ee01674j
- Kim, S. J., Song, Y.-A. and Han, J., "Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications," Chem. Sov. Rev., 39, 912-922(2010). https://doi.org/10.1039/b822556g
- Rubinstein, I. and Zaltzman, B., "Electro-Osmotically Induced Convection at a Permselective Membrane," Phys. Rev. E, 62, 2238-2251(2000). https://doi.org/10.1103/PhysRevE.62.2238
- Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99, 044501(2007). https://doi.org/10.1103/PhysRevLett.99.044501
- Pham, V. S., Li, Z., Lim, K. M., White, J. K. and Han, J., "Direct Numerical Simulation of Electroconvective Instability and Hysteretic Current-voltage Response of a Permselective Membrane," Phys. Rev. E, 86, 046310(2012). https://doi.org/10.1103/PhysRevE.86.046310
- Druzgalski, C. L., Andersen, M. B. and Mani, A., "Direct Numerical Simulation of Electroconvective Instability and Hydrodynamic Chaos Near An Ion-selective Surface," Phys. Fluids, 25, 110804 (2013). https://doi.org/10.1063/1.4818995
- Demekhin, E. A., Nikitin, N. V. and Shelistov, V. S., "Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion," Phys. Fluids, 25, 122001(2013). https://doi.org/10.1063/1.4843095
- Yang, K. D. et al., "Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode," Angew. Chem. Int. Ed., 56, 796-800(2017). https://doi.org/10.1002/anie.201610432
- Lee, H., "Electroconvective Instability on Undulated Ion-selective Surface," Korean Chem. Eng. Res., 57, 735-742(2019). https://doi.org/10.9713/kcer.2019.57.5.735
- Kwak, R., Pham, V. S. and Han, J., "Sheltering the Perturbed Vortical Layer of Electroconvection Under Shear Flow," J. Fluid Mech., 813, 799-823(2017). https://doi.org/10.1017/jfm.2016.870
- Kim, M., Wu, L., Kim, B., Hung, D. T. and Han, J., "Continuous and High-Throughput Electromechanical Lysis of Bacterial Pathogens Using Ion Concentration Polarization," Anal. Chem., 90, 872-880(2018). https://doi.org/10.1021/acs.analchem.7b03746
- Rubinstein, I. and Zaltzman, B., "Electro-osmotic Slip of The Second Kind and Instability in Concentration Polarization at Electrodialysis Membranes," Math. Models Methods Appl. Sci., 11, 263-300(2001). https://doi.org/10.1142/S0218202501000866
- Schiffbauer, J., Demekhin, E. A. and Ganchenko, G., "Electrokinetic Instability in Microchannels," Phys. Rev. E, 85, 055302(2012). https://doi.org/10.1103/PhysRevE.85.055302
- Andersen, M. B., Wang, K. M., Schiffbauer, J. and Mani, A., "Confinement Effects on Electroconvective Instability," Electrophoresis, 38, 702-711(2017). https://doi.org/10.1002/elps.201600391
- Lee, H., "Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode," Korean Chem. Eng. Res., 58, 319-324 (2020).
- Schoch, R. B., Han, J. and Renaud, P., "Transport Phenomena in Nanofluidics," Rev. Mod. Phys., 80, 839-883(2008). https://doi.org/10.1103/RevModPhys.80.839