DOI QR코드

DOI QR Code

Dynamics Transition of Electroconvective Instability Depending on Confinement Effect

공간 제약 효과에 따른 전기와류 불안정성의 동역학 전이

  • Lee, Seungha (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Hyun, Cheol Heon (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Hyomin (Department of Chemical and Biological Engineering, Jeju National University)
  • 이승하 (제주대학교 생명화학공학과) ;
  • 현철헌 (제주대학교 생명화학공학과) ;
  • 이효민 (제주대학교 생명화학공학과)
  • Received : 2021.05.07
  • Accepted : 2021.06.15
  • Published : 2021.11.01

Abstract

One of the nonlinear electrokinetic phenomena around ion exchange membrane is electroconvective instability which can be found in various electrokinetic applications such as electrodialysis, electrochemical battery, microfluidic analysis platform, etc. Such instability acts as a positive transport mechanism for the electrodialysis via amplifying mass transport rate. On the other hands, in the electrochemical battery and the microfluidic applications, the instability provokes unwanted mass transport. In this research, to control the electroconvective instability, the onset of the instability was analyzed as a function of confinement effect as well as applied voltage. As a result, we figured out that the dynamic behavior of electroconvective instability transited as a sequence of stable regime - static regime - chaotic regime depending on the applied voltage and confinement effect. Furthermore, stability curves about the dynamic transition were numerically determined as well. Conclusively, the confinement effect on electroconvective instability can be applied for effective means to control the electrokinetic chaos.

전기투석장치, 전기화학 전지, 미세유체역학 분석 장치 등에서 사용하는 이온 교환 막 근처의 대표적인 비선형 전기동역학 현상은 전기와류 불안정성이다. 전기투석 장치에서 전기와류 불안정성은 물질 전달 속도 증폭을 통해 물질 전달에 대한 이점을 제공한다. 그러나 전기화학 전지나 미세유체역학 장치에서 발생하는 불안정성은 원치 않는 물질 전달 기작을 유발시킨다. 본 연구에서는 전기와류 불안정성의 제어하기 위해, 인가 전압과 공간 제약 효과의 전기와류 불안정성에 대한 영향을 연구하였다. 그 결과, 인가 전압과 공간 제약의 정도에 따라 불안정성의 동역학이 안정 영역 - 고정 영역 - 혼돈 영역 순으로 전이됨을 밝혀내었다. 더불어, 동역학 전이에 대한 안정성 곡선을 수치적으로 결정하였다. 결론적으로, 공간 제약 효과는 전기동역학적 혼돈을 제어할 수 있는 효과적인 기작으로 활용 가능할 것이다.

Keywords

Acknowledgement

이 논문은 2020년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.

References

  1. Kwak, R., Pham, V. S., Lim, K. M. and Han, J., "Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices," Phys. Rev. Lett., 110, 114501(2013). https://doi.org/10.1103/physrevlett.110.114501
  2. Bai, P., Li, J., Brushett, F. R. and Bazant, M. Z., "Transition of Lithium Growth Mechanisms in Liquid Electrolytes," Energy & Environmental Science, 9, 3221-3229(2016). https://doi.org/10.1039/c6ee01674j
  3. Kim, S. J., Song, Y.-A. and Han, J., "Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications," Chem. Sov. Rev., 39, 912-922(2010). https://doi.org/10.1039/b822556g
  4. Rubinstein, I. and Zaltzman, B., "Electro-Osmotically Induced Convection at a Permselective Membrane," Phys. Rev. E, 62, 2238-2251(2000). https://doi.org/10.1103/PhysRevE.62.2238
  5. Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99, 044501(2007). https://doi.org/10.1103/PhysRevLett.99.044501
  6. Pham, V. S., Li, Z., Lim, K. M., White, J. K. and Han, J., "Direct Numerical Simulation of Electroconvective Instability and Hysteretic Current-voltage Response of a Permselective Membrane," Phys. Rev. E, 86, 046310(2012). https://doi.org/10.1103/PhysRevE.86.046310
  7. Druzgalski, C. L., Andersen, M. B. and Mani, A., "Direct Numerical Simulation of Electroconvective Instability and Hydrodynamic Chaos Near An Ion-selective Surface," Phys. Fluids, 25, 110804 (2013). https://doi.org/10.1063/1.4818995
  8. Demekhin, E. A., Nikitin, N. V. and Shelistov, V. S., "Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion," Phys. Fluids, 25, 122001(2013). https://doi.org/10.1063/1.4843095
  9. Yang, K. D. et al., "Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode," Angew. Chem. Int. Ed., 56, 796-800(2017). https://doi.org/10.1002/anie.201610432
  10. Lee, H., "Electroconvective Instability on Undulated Ion-selective Surface," Korean Chem. Eng. Res., 57, 735-742(2019). https://doi.org/10.9713/kcer.2019.57.5.735
  11. Kwak, R., Pham, V. S. and Han, J., "Sheltering the Perturbed Vortical Layer of Electroconvection Under Shear Flow," J. Fluid Mech., 813, 799-823(2017). https://doi.org/10.1017/jfm.2016.870
  12. Kim, M., Wu, L., Kim, B., Hung, D. T. and Han, J., "Continuous and High-Throughput Electromechanical Lysis of Bacterial Pathogens Using Ion Concentration Polarization," Anal. Chem., 90, 872-880(2018). https://doi.org/10.1021/acs.analchem.7b03746
  13. Rubinstein, I. and Zaltzman, B., "Electro-osmotic Slip of The Second Kind and Instability in Concentration Polarization at Electrodialysis Membranes," Math. Models Methods Appl. Sci., 11, 263-300(2001). https://doi.org/10.1142/S0218202501000866
  14. Schiffbauer, J., Demekhin, E. A. and Ganchenko, G., "Electrokinetic Instability in Microchannels," Phys. Rev. E, 85, 055302(2012). https://doi.org/10.1103/PhysRevE.85.055302
  15. Andersen, M. B., Wang, K. M., Schiffbauer, J. and Mani, A., "Confinement Effects on Electroconvective Instability," Electrophoresis, 38, 702-711(2017). https://doi.org/10.1002/elps.201600391
  16. Lee, H., "Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode," Korean Chem. Eng. Res., 58, 319-324 (2020).
  17. Schoch, R. B., Han, J. and Renaud, P., "Transport Phenomena in Nanofluidics," Rev. Mod. Phys., 80, 839-883(2008). https://doi.org/10.1103/RevModPhys.80.839