• 제목/요약/키워드: Chemical characterization

검색결과 2,951건 처리시간 0.035초

Studies on the Electrochemical Behavior of Heavy Lanthanide Ions and the Synthesis, Characterization of Heavy Metal Chelate Complexes(II). Synthesis and Characterization of Eight Coordinate Tungsten(IV) and Cerium(IV) Chelate Complex (무거운 란탄이온의 전기화학적 거동 및 중금속이온의 킬레이트형 착물의 합성 및 특성에 관한 연구(제2보). 8배위 텅스텐(IV)과 세륨(IV)의 킬레이트형 착물의 합성 및 특성)

  • Kang, Sam Woo;Chang, Choo Wan;Suh, Moo Yul;Lee, Doo Youn;Choi, Won Jong
    • Analytical Science and Technology
    • /
    • 제5권1호
    • /
    • pp.41-49
    • /
    • 1992
  • An attempt was made to prepare two series of tetrakis eight-coordinate tungsten(IV) and cerium(IV) complexes containing the 5,7-dichloro-8-quinolinol(N:${\pi}$-acceptor atom, O:${\pi}$-donor atom) ligand. Tetrakis eight-coordinate tungsten(IV) complex of 2-mercaptopyrimidine(N:${\pi}$-acceptor atom, S:${\pi}$-donor atom) ligand have also been prepared. And the new series of mixed-ligand eight-coordinate tungsten(IV) complexes containing bidentate ligands 5,7-dichloro-8-quinolinol and 2-mercaptopyrimidine have been prepared, isolated by TLC and characterized. $W(dcq)_4$, $W(dcq)_3(mpd)_1$, $W(dcq)_2(mpd)_2$, $W(dcq)_1W(dcq)_3$ and $W(mpd)_4$ complexes of MLCT absorption band appeared to 710nm, 680nm, 625nm, 581nm, and 571nm(${\varepsilon}\;max={\sim}>{\times}10^4$) on low-energy respectively. The specific absorption wave length of $Ce(dcq)_4$ is appeared 520nm(${\varepsilon}\;max={\sim}>{\times}10^4$). The Chemical shift values by proton of coordinated position appeared to $W(dcq)_4$ [$H_2:8.9ppm$]; $W(dcq)_3(mpd)_1$ [$H_2:9.3$,$H_6:9.2ppm$]; $W(dcq)_2(mpd)_2$ [$H_2:9.7$,$H_6:8.95ppm$]; $W(dcq)_1(mpd)_3$ [$H_2:9.8$,$H_6:9.4ppm$]; $W(mpd)_4$ [$H_6:8.8ppm$]; $Ce(dcq)_4$ [$H_2:9.3ppm$] with $^1H$-NMR. The inertness of mixed-ligand eight coordinate tungsten(IV) complexes have been investigated by UV-Vis. spectroscopic method in dimethylsulfoxide at $90^{\circ}C$. The inertness of $W(dcq)_n(mpd)_{4-n}$ complexes showed the following order, $W(dcq)_3(mpd)_1;k_{obs.}=3.8{\times}10^{-6}$ > $W(mpd)_4;k_{obs.}=6.0{\times}10^{-6}$ > $W(dcq)_4;k_{obs.}=6.4{\times}10^{-6}$ > $W(dcq)_2(mpd)_2;k_{obs.}=7.0{\times}10^{-6}$ > $W(dcq)_1(mpd)_3;k_{obs.}=1.7{\times}10^{-5}$, which showed the inertness until 16days, 10days, 9days, 8days, and 4days. The $W(mpd)_4$ is very inert as $k_{obs.}=3.6{\times}10^{-6}$(16days) in xylene at $90^{\circ}C$ and $k_{obs.}=6.0{\times}10^{-6}$(10days) in DMSO at $90^{\circ}C$.

  • PDF

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제12권4호
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제22권2호
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • 제47권4호
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

Mineralogical Characterization of Asbestos in Soil at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 토양 내 석면의 광물학적 특성)

  • Kim, Jaepil;Jung, Haemin;Song, Suckwhan;Lim, HoJu;Lee, WooSeok;Roh, Yul
    • Economic and Environmental Geology
    • /
    • 제47권5호
    • /
    • pp.479-488
    • /
    • 2014
  • Naturally occurring asbestos (NOA) from disturbance of rocks and soils has been overlooked as a source of exposure that could potentially have a detrimental impact on human health. But, few researches on mineralogical characteristics of NOA occurred in soils have been reported in Korea. Therefore, the objective of this study was to investigate the mineralogical characteristics of NOA occurred in soils at Daero-ri area, Seosan, Chungnam Province, Korea. Sedimentation method was used for particle size separation of the asbestos-containing soils. XRD and PLM analyses were used to characterize mineralogical characteristics and mineral assemblages in soils. SEM-EDS and TEM-EDS analyses were used to characterize mineral morphology and chemical composition. Particle size analyses of the asbestos-containing soils showed they were composed of 26-93% sand, 4-23% silt and 3-70% clay. Soil texture of the soils was mainly sand, sandy loam, sandy clay, and clay. PLM analyses of the soil showed that most of the soil contained asbestiform tremolite and actinolite. The average content of asbestos in the soil was 1.5 wt. %. Therefore, the soil can be classified into asbestos-contaminated soils based on U. S. Environmental Protection Agency classification (content of asbestos in contaminated soil > 1%). Morphologically different types of tremolite such as long fibrous, needle-like, fiber bundle, bladed and prismatic forms co-existed. Prismatic tremolite was dominant in sand fraction and asbestiform tremolite was dominant in silt fraction. This study indicates that the prismatic form of tremolite transform gradually into a fibrous form of tremolite due to soil weathering because tremolite asbestos was mainly existed in silt fraction rather than sand fraction.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Characterization and Formation Mechanisms of Clogging Materials in Groundwater Wells, Mt. Geumjeong Area, Busan, Korea (부산 금정산 일대 지하수공내 공막힘 물질의 특징과 형성원인)

  • Choo, Chang-Oh;Hamm, Se-Yeong;Lee, Jeong-Hwan;Lee, Chung-Mo;Choo, Youn-Woo;Han, Suk-Jong;Kim, Moo-Jin;Cho, Heuy-Nam
    • The Journal of Engineering Geology
    • /
    • 제22권1호
    • /
    • pp.67-81
    • /
    • 2012
  • The physical, chemical, and biological properties of clogging materials formed within groundwater wells in the Mt. Geumjeong area, Busan, Korea, were characterized. The particle size distribution (PSD) of clogging materials was measured by a laser analyzer. XRD, SEM, and TEM analyses were performed to obtain mineralogical information on the clogging materials, with an emphasis on identifying and characterizing the mineral species. In most cases, PSD data exhibited an near log-normal distribution; however, variations in frequency distribution were found in some intervals (bi-or trimodal distributions), raising the possibility that particles originated from several sources or were formed at different times. XRD data revealed that the clogging materials were mainly amorphous ironhydroxides such as goethite, ferrihydrite, and lapidocrocite, with lesser amounts of Fe, Mn, and Zn metals and silicates such as quartz, feldspar, micas, and smectite. Reddish brown material was amorphous hydrous ferriciron (HFO), and dark red and dark black materials were Fe, Mn-hydroxides. Greyish white and pale brown materials consisted of silicates. SEM observations indicated that the clogging materials were mainly HFO associated with iron bacteria such as Gallionella and Leptothrix, with small amounts of rock fragments. In TEM analysis, disseminated iron particles were commonly observed in the cell and sheath of iron bacteria, indicating that iron was precipitated in close association with the metabolism of bacterial activity. Rock-forming minerals such as quartz, feldspar, and micas were primarily derived from soils or granite aquifers, which are widely distributed in the study area. The results indicate the importance of elucidating the formation mechanisms of clogging materials to ensure sustainable well capacity.

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • 제25권9호
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.

Saponin Contents and Physicochemical Properties of Red Ginseng Extract Pouch Products Collected from Ginseng Markets in Korea (국내 인삼시장에서 유통되고 있는 홍삼 파우치 제품의 사포닌 함량 및 이화학적 특성)

  • Choi, Jae-Eul;Han, Jin-Soo;Kang, Sun-Joo;Kim, Kwan-Hou;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제39권11호
    • /
    • pp.1660-1665
    • /
    • 2010
  • To obtain data for the standardization of manufacturing method of red ginseng extract pouch products, saponin and physico-chemical properties of 44 Korean red ginseng extract pouch products were analyzed. The concentration of total ginsenoside contents were 5.5~185.7 mg/100 mL. Distribution of the contents of ginsenoside $Rg_3$, $Rg_2$, $Rh_1$, and $Rh_2$ known to have anticancer effect are as follows: $Rg_3$ is 1.6~46.3 mg/100 mL, $Rg_2$ is 0~22.0 mg/100 mL, $Rh_1$ is 0~4.3 mg/100 mL and that of $Rh_2$ is 0~20.4 mg/100 mL, respectively. The anti-diabetic effect of ginsenoside $Rb_2$ and Re distribution of contents were 0~10.8 mg/100 mL and 0~7.0 mg/100 mL, respectively. Among the other saponins, exhibited content to distribution of ginsenoside $Rb_1$ was 0~25.2 mg/100 mL, Rc was 0~12.5 mg/100 mL, Rd was 0~11.3 mg/100 mL, Rf was 0~5.9 mg/100 mL and $Rg_1$ was 0~4.4 mg/100 mL. Results of physicochemical characterization showed total sugar content of 226.6~3,102.9 mg/100 mL, total soluble solids content $1.4\sim9.5^{\circ}Bx$, turbidity 82.2~100.0%, pH in the range of 4.1 to 5.0, respectively. In approximately 50% of collected domestic ginseng extract pouch products (21~24 items), ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re and $Rg_1$ were not detected, and saponin content of each product appears to differ greatly. Results indicated that standardization of production methods and standards set for red ginseng extract pouch products in Korea is needed.

Preparation and Characterization of Jochung, a Grain Syrup, with Apple (사과 첨가 조청의 제조 및 특성)

  • Yang, Hye-Jin;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제39권1호
    • /
    • pp.132-137
    • /
    • 2010
  • This study was performed to investigate the effect of apple and maltitol as ingredients on the quality of Jochung, a grain syrup. Four kinds of Jochung products were prepared from steamed-rice, apple juice, heated-apple sarcocarp (at $70^{\circ}C$, 60 min), and a mixture (sarcocarp : maltitol=5:1, w/w) by saccharifying (at $55^{\circ}C$, 8 hrs) with a malt (100 g/500 g rice), mixing the ingredients (steamed-rice : ingredient=5:5, w/w), filtering, and heating the filtrate (at $95^{\circ}C$, 2 hrs): product (A) with apple juice added before saccharified, product (B) with apple juice added after saccharified, product (C) with heated-apple sarcocarp added after saccharified, and product (D) with the mixture added after saccharified. The product (D) had the lowest pH value ($4.60\pm0.01$) of any other products. The contents of reducing sugar and total phenolic compound were the highest in the product (A) among all the products, which comprised $68.10\pm6.71$% and $7.36\pm0.85$ mg/g, respectively, resulting in good quality. The solidity and the dextrose equivalence had the highest value in the product (B) and the product (C), respectively. The malic acid content ($4.10\pm0.02$%) of the product (D) was the highest of any other organic acids identified by HPLC. Hunter L, a, and b values of the product (D) were the highest compared to other products. In sensory evaluation, the product (A) had generally higher score in all sensory attributes. It was concluded from the chemical and sensory evaluation that adding the apple juice before saccharified might be an effective method for manufacturing good quality rice-Jochung.