DOI QR코드

DOI QR Code

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese

KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용

  • Kim, Yumi (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Oh, Jong-Min (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Jung, Hea-Yeon (Korea Basic Science Institute) ;
  • Lee, Seung Yeop (Korea Atomic Energy Research Institute) ;
  • Roh, Yul (Department of Earth and Environmental Sciences, Chonnam National University)
  • 김유미 (전남대학교 지구환경과학과) ;
  • 오종민 (전남대학교 지구환경과학과) ;
  • 정혜연 (한국기초과학지원연구원 광주센터) ;
  • 이승엽 (한국원자력연구원 방사성폐기물기술개발부) ;
  • 노열 (전남대학교 지구환경과학과)
  • Received : 2014.06.10
  • Accepted : 2014.08.31
  • Published : 2014.08.28

Abstract

The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

이 연구의 목적은 KURT(KAERI underground research tunnel) 지하수 내에 금속이온을 환원시키는 미생물의 존재 여부를 확인하고 배양하여, 이들의 활동에 따른 철과 망간 환원의 관찰과 환원물의 광물학적 특성을 연구함으로써, 금속환원미생물에 의한 산화상태로 존재하는 철과 망간의 환원과 광물 상전이 가능성을 확인하는 것이다. KURT 지하수 내 금속을 환원하는 미생물은 전자공여체로 포도당, 초산, 젖산, 개미산, 피루브산을, 전자수용체로 Fe(III)-citrate를 사용하여 농화배양 하였으며, 16S rRNA 분석을 통해 종 다양성을 확인하였다. 농화배양된 금속환원미생물에 의한 철과 망간의 환원과 생광물화작용을 알아보기 위해 전자공여체로 포도당, 초산, 젖산, 개미산, 피루브산을, 전자수용체로 철수산화물인 아카가나이트(akaganeite, ${\beta}$-FeOOH)와 망간산화물(manganese oxide, ${\lambda}-MnO_2$)을 이용하여 금속환원 실험을 실시하였다. 미생물 활동에 의해 형성된 환원물의 광물학적 특성은 SEM, EDX, XRD 분석을 통해 확인되었다. 연구 결과 KURT 지하수에서 금속을 환원하는 혐기성 미생물로는 Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp. 등이 확인되었고, 이 미생물들은 체외에서 철과 망간을 환원하여 이들 광물의 상전이를 확인하였다. 철(Fe)은 $Fe^{3+}$을 포함한 아카가나이트(${\beta}$-FeOOH)에서 $Fe^{2+}/Fe^{3+}$를 포함한 자철석($Fe_3O_4$)으로 환원되었고, 망간(Mn)은 $Mn^{4+}$를 포함한 망간산화물(${\lambda}-MnO_2$)에서 $Mn^{2+}$을 포함한 능망간석($MnCO_3$)으로 환원되었다. 이러한 지하 140 m의 KURT 지하수에서 서식하는 미생물들에 의해 철과 망간이 환원됨은 다른 중금속과 핵종원소의 환원 가능한 환경이 조성되었을 뿐 만 아니라, 미생물에 의하여 환원된 철의 재산화에 의해서도 주변 핵종원소가 환원될 수 있음을 의미한다. 따라서 이러한 직 간접적인 산화-환원 반응에 의해 KURT 지하수 내에서는 금속환원미생물들이 유해금속물질을 침전시켜 이동성을 줄일 수 있을 뿐만 아니라 고준위 폐기물에서 유해물질의 유출시 핵물질의 확산을 막는데 중요한 역할을 할 수 있을 것으로 사료된다.

Keywords

References

  1. Fischer, T.B., Heaney, P.J., Jang, J.H., Ross, D.E., Brantley, S.L., Post, J.E. and Tien, M. (2008) Continuous time-resolved X-ray diffraction of the biocatalyzed reduction of Mn oxide. American Mineralogist, v.93, p.1929-1932. https://doi.org/10.2138/am.2008.3038
  2. Kim, Y.M., Park, J.E., Lee, J.Y. and Roh, Y. (2011) Metal reduction and biomineralization by bacteria enriched from intertidal flat sediments, Suncheon Bay, Korea. Journal of the Geological Society of Korea, v.47, p.19-30 (in Korean with English abstract).
  3. Lee, S.Y. and Baik, M.H. (2007) Characters of fracture-filling minerals in the KURT and their significance. Journal of the Mineralogical Society of Korea, v.20, p.165-173 (in Korean with English abstract).
  4. Lee, S.Y., Baik, M.H. and Oh, J.M. (2010) The effect of Fe-bearing minerals on the interaction between underground dissimilatory metal-reducing bacteria and dissolved uranium. Journal of the Geological Society of Korea, v.46, p.357-366 (in Korean with English abstract).
  5. Lloyd, J.R. (2003) Microbial reduction of metals and radionuclides. FEMS Microbiology Reviews, v.27, p.411-425. https://doi.org/10.1016/S0168-6445(03)00044-5
  6. Lovely, D.R., (1991) Dissimilatory Fe(III) and Mn(IV) reduction, Microbiological Reviews, v.55, p.259-287.
  7. McCullough, J., Hazen, T.C., Benson, S.M., Metting, F.B. and Palmisano, A.C. (1999) Bioremediation of metals and radionuclides: What it is and How it Works. Lawrence Berkeley National Laboratory, a NABIR premier, 39p.
  8. Mclean, J. and Beveridge, T.J. (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Applied and Environmental Microbiology, v.67, p.1076-1084. https://doi.org/10.1128/AEM.67.3.1076-1084.2001
  9. Oh, C.W. (1996) Evaluation of the safety for the disposal of high-level nuclear waste in the granite. Economic and Environmental Geology, v.29, p.215-225 (in Korean with English abstract).
  10. Oh, J.M. (2009) Geomicrobiological study of anaerobic microorganisms from KURT groundwater: Microbial diversity and reduction of Fe(III), Mn(III/IV), Cr(VI), Se(VI), Department of Earth and Environmental Sciences, Chonnam National University (M.S. Thesis).
  11. Oh, J.M., Lee, S.Y., Baik, M.H. and Roh, Y. (2010) Characterization of uranium removal and mineralization by bacteria in deep underground, Korea atomic energy research institute (KAERI). Journal of the Mineralogical Society of Korea, v.23, p.107-115 (in Korean with English abstract).
  12. Ravot, G., Magot, M., Fardeau, M.L., Patel, B.K., Thomas, P., Garcia, J.L. and Ollivier, B. (1999) Fusibacter paucivorans gen. nov., sp. nov., an anaerobic thiosulfate-reducing bacterium from an oil-producing well, International Journal of Systematic Bacteriology, v.49, p.1141-1147. https://doi.org/10.1099/00207713-49-3-1141
  13. Roh, Y., Lauf, R.J., McMillan, A.D., Zhang, C., Rawn, C.J., Bai, J. and Phelps, T.J. (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Communications, v.118, p.529-534. https://doi.org/10.1016/S0038-1098(01)00146-6
  14. Roh, Y., Liu, S.V., Li, G., Huang, H., Phelps, T.J. and Zhou, J. (2002) Isolation and characterization of metalreducing Thermoanaerobacter strains from deep subsurface environments of the piceance basin, Colorado. Applied and Environmental Microbiology, v.68, p.6013-6020. https://doi.org/10.1128/AEM.68.12.6013-6020.2002
  15. Roh, Y., Zhang, C.L., Vali, H., Lauf, R.J., Zhou, J. and Phelps, T.J. (2003) Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation. Clays and Clay minerals, v.51, p.83-95. https://doi.org/10.1346/CCMN.2003.510110
  16. Sung, Y.B., Ritalahti, K.M., Sanford, R.A., Urbance, J.W., Flynn, S.J., Tiedje, J.M. and Loffler, F.E. (2003) Characterization of two tetrachloroethene -reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Applied and Environmental Microbiology, v.69, p.2964-2974. https://doi.org/10.1128/AEM.69.5.2964-2974.2003

Cited by

  1. Metal Recovery from the Mobile Phone Waste by Chemical and Biological Treatments vol.8, pp.1, 2018, https://doi.org/10.3390/min8010008