DOI QR코드

DOI QR Code

Mineralogical Characterization of Asbestos in Soil at Daero-ri, Seosan, Chungnam, Korea

충남 서산 대로리 일대 토양 내 석면의 광물학적 특성

  • Kim, Jaepil (FITI Testing & Research Institute) ;
  • Jung, Haemin (Department of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Song, Suckwhan (Department of Civil Engineering, College of Engineering, Joongbu University) ;
  • Lim, HoJu (National Institute of Environmental Research) ;
  • Lee, WooSeok (National Institute of Environmental Research) ;
  • Roh, Yul (Department of Earth Systems and Environmental Sciences, Chonnam National University)
  • 김재필 (FITI 시험연구원) ;
  • 정혜민 (전남대학교 지구환경과학과) ;
  • 송석환 (중부대학교 토목공학과) ;
  • 임호주 (국립환경과학원 생활환경연구과) ;
  • 이우석 (국립환경과학원 생활환경연구과) ;
  • 노열 (전남대학교 지구환경과학과)
  • Received : 2014.05.20
  • Accepted : 2014.10.30
  • Published : 2014.10.28

Abstract

Naturally occurring asbestos (NOA) from disturbance of rocks and soils has been overlooked as a source of exposure that could potentially have a detrimental impact on human health. But, few researches on mineralogical characteristics of NOA occurred in soils have been reported in Korea. Therefore, the objective of this study was to investigate the mineralogical characteristics of NOA occurred in soils at Daero-ri area, Seosan, Chungnam Province, Korea. Sedimentation method was used for particle size separation of the asbestos-containing soils. XRD and PLM analyses were used to characterize mineralogical characteristics and mineral assemblages in soils. SEM-EDS and TEM-EDS analyses were used to characterize mineral morphology and chemical composition. Particle size analyses of the asbestos-containing soils showed they were composed of 26-93% sand, 4-23% silt and 3-70% clay. Soil texture of the soils was mainly sand, sandy loam, sandy clay, and clay. PLM analyses of the soil showed that most of the soil contained asbestiform tremolite and actinolite. The average content of asbestos in the soil was 1.5 wt. %. Therefore, the soil can be classified into asbestos-contaminated soils based on U. S. Environmental Protection Agency classification (content of asbestos in contaminated soil > 1%). Morphologically different types of tremolite such as long fibrous, needle-like, fiber bundle, bladed and prismatic forms co-existed. Prismatic tremolite was dominant in sand fraction and asbestiform tremolite was dominant in silt fraction. This study indicates that the prismatic form of tremolite transform gradually into a fibrous form of tremolite due to soil weathering because tremolite asbestos was mainly existed in silt fraction rather than sand fraction.

최근 석면의 효과적인 관리를 위해 산업적 이용 규제 및 석면포함물질 처리 뿐 아니라 자연발생석면의 이해와 정화 필요성도 제기되고 있다. 그러나 국내에서 암석 내 산출되는 자연발생석면의 특성이나 풍화작용을 거쳐 토양 내 잔류하는 자연발생석면에 대한 기존 연구는 미비한 상황이다. 따라서 이 연구에서는 변성퇴적암류가 기반암인 충남 서산 대로리 일대의 토양 내 자연발생석면의 존재를 확인하고 석면형(asbestiform) 광물의 산출양상 및 광물학적 특성을 통해 석면오염토양의 효과적인 정화 방안에 대해 알아보고자 하였다. 토양의 입도 분리 및 광물학적 분석을 실시한 결과, 토양 내 무게 백분율은 모래가 26~93%, 미사가 4~23%, 점토가 3~70%이며, 토성은 사토(sand), 사양토(sandy loam), 사질 식토(sandy clay), 식토(clay) 등 다양하게 나타났다. 연구 결과 모든 시료에서 석면형 투각섬석과 석면형 양기석이 함께 산출되었고 석면의 함량은 평균 1.5%로 미국 EPA 기준(1% 이상)에 따라 석면 포함물질로 분류되었다. 모래에 존재하는 투각섬석은 벽개가 발달한 주상 형태로 평균 길이 $288{\mu}m$, 폭 $69{\mu}m$, 종횡비 4.1:1의 특징을 보인 반면, 미사에 존재하는 투각섬석은 평균 길이 $49.2{\mu}m$, 폭 $5.8{\mu}m$로 크기는 더 작고 종횡비가 8.5:1인 개별섬유 형태로 나타났다. 이는 투각섬석이 풍화작용을 받으면서 종횡비는 커지고 형태는 비산이 가능한 개별 섬유로 바뀐 것으로 사료된다. $5{\mu}m$ 이상 크기의 석면형 투각섬석과 석면형 양기석의 함량은 토양 중 미사에서 가장 높게 나타났으며 이를 통해 석면오염토양 정화 시 입도 분리를 이용한 선택적인 석면 제거의 가능성을 확인하였다.

Keywords

References

  1. Choi, J.K., Paek, D.M. and Paik, N.W. (1998) The production, the use, the number of workers and exposure level of asbestos in Korea. Korean Industrial Hygiene Association Journal, v.8, n.2, p.242-253.
  2. Choi, J.K., Paek, D.M., Paik, N.W., Hisanaga, N. and Sakai, K. (1998) A study on several minerals contaminated with asbestiform fibers in Korea. Korean Industrial Hygiene Association Journal, v.8, n.2, p.254-263.
  3. Gee, G.W. and Bauder, J.W. (1986) Particle size analysis. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, 383-411p.
  4. Ham, S.H., Hwang, S.H., Yoon, C.S. and Park, D.U. (2009) Review on asbestos analysis. Journal of Korean Society of Occupational and Environmental Hygiene, v.19, n.3, p.213-232.
  5. Hendrickx, M. (2009) Naturally occurring asbestos in eastern Australia: a review of geological occurrence, disturbance and mesothelioma risk. Environmental Geology, v.57, n.4, p.927-928. https://doi.org/10.1007/s00254-008-1402-1
  6. Kang, D.M. (2009) Health Effects of Environmental asbestos exposure. Journal of Environmental Health Sciences, v.35, n.2, p.71-77. https://doi.org/10.5668/JEHS.2009.35.2.071
  7. Kim, D.H. and Hwang, J.H. (1982) Geological report of the Daesan-Eigog sheet (1:50,000). Kore institute of Energy and Resources, 27p.
  8. Kim, S.G. (2009) Compensation and diagnosis of asbestos related disease. Korean Journal of Family Medicine, v.30, n.5, p.335-343. https://doi.org/10.4082/kjfm.2009.30.5.335
  9. Kwon, J.W. (2009) Asbestos analysis of Bulk samples using a polarized Light microscope. Occupational Safety and Health Research Institute, 80p.
  10. Lee, R.J., Strohmeier, B.R., Bunker, K.L. and Orden, D.R.V. (2008) Naturally occurring asbestos: A recurring public policy challenge. Journal of Hazardous Materials, v.153, n.1-2, p.1-21. https://doi.org/10.1016/j.jhazmat.2007.11.079
  11. McManus, J. (1988) Grain Size Determination and Interpretation. In Techmiques in Sedimentology. In Tucker, M. (ed.). Blackwell: Oxford, 63-85p.
  12. NIOSH (2011) Asbestos fibers and other elongate mineral particles: State of the science and roadmap for research. DHHS (NIOSH) Publication, 174p.
  13. Perkins, R.L. and Harvey, B.W. (1993) Test Method for the Determination of Asbestos in Bulk Building Materials. U.S. Environmental Protection Agency. EPA/600/R-93/116, 99p.
  14. Pulleda, S. and Marconi, A. (1989) Quantitative x-ray diffraction analysis of four types of amphibolic asbestos by the siver membrane filter method. International Journal of Environmental Analytical Chemistry, v.36, n.4, p.209-220. https://doi.org/10.1080/03067318908026874
  15. Song, S.H., Hwang, J.H., Hwang, B.G. and Kim, H.W. (2008) Occurrence types and mineralogical characteristics of asbestos for the Kwangcheon area, Chungnam. Journal of Korean Society of Occupational and Environmental Hygiene, v.18, n.4, p.271-281.
  16. The Mineralogical Society of Korea, Mine Reclamation Corporation (2010) Method for the determination of asbestos in soil and water. Journal of the Mineralogical Society of Korea, v.23, n.2, p.171-183.
  17. Vacek, P.M. and Mcdonald J.C. (1990) Effect of intensity in asbestos cohort exposure-response analyses. In: Sakurai H, editor. Occupational epidemiology. Elsevier Science Publications, p.189-193.
  18. Yoon, K.T., Hwang, J.Y., Oh, J.H. and Lee, H.M. (2010) Characteristics of tremolite asbestos from abandoned asbestos mines in boryeong area, Chungnam. Journal of the Mineralogical Society of Korea, v.23, n.1, p.73-84.