DOI QR코드

DOI QR Code

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea

충남 서산 대로리 일대 자연발생석면의 광물학적 특성

  • Jung, Haemin (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Shin, Joodo (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim, Yumi (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Park, Jaebong (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Roh, Yul (Department of Earth and Environmental Sciences, Chonnam National University)
  • 정혜민 (전남대학교 지구환경과학과) ;
  • 신주도 (전남대학교 지구환경과학과) ;
  • 김유미 (전남대학교 지구환경과학과) ;
  • 박재봉 (전남대학교 지구환경과학과) ;
  • 노열 (전남대학교 지구환경과학과)
  • Received : 2014.09.16
  • Accepted : 2014.10.17
  • Published : 2014.10.28

Abstract

Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.

자연발생석면은 사문석군 석면의 모암인 초염기성암 외에도 탄산염암 및 편암, 염기성암을 모암으로 산출될 수 있다. 하지만 사문석군 석면의 모암인 초염기성암에 비해 탄산염암에서 발생하는 각섬석군 석면의 광물학적 특성에 대한 연구는 미비한 실정이다. 따라서, 이 연구에서는 탄산염암 및 편암을 모암으로 하는 자연발생석면에 대한 광물학적 특성을 연구하고 그 기원에 대해서 고찰하고자 하였다. 연구지역은 충남 서산시 대산읍 대로리 일대로 주된 연구대상은 서산층군 내 석회암 및 편암이며 시대미상의 암맥에 의해 관입되거나 습곡과 단층에 의해 교란되었다. 시료채취는 탄산염암과 편암의 접촉부에서 침상의 결정들이 관찰되는 노두를 선정하여 진행하였다. 광물조성 및 동정을 위해 PLM, XRD, EPMA 및 EDS 분석을 실시하였으며 각섬석의 형태 관찰을 위해 SEM 분석을 실시하였다. 또한 BSEM 이미지 분석을 통해 미세조직을 관찰하였다. XRD와 PLM을 통해 광물동정 한 결과 탄산염암에서는 양기석-투각섬석이 산출되었으며 석면형 결정의 정벽은 치밀하게 얽힌 침상이거나 비석면형의 결정이 벽개면을 따라 석면형으로 발달해가는 것을 확인하였다. EPMA 분석결과 탄산염암에서 산출되는 석면은 양기석-투각섬석으로 총 Fe 함량은 3~17%였다. Fe 함량이 10% 이상인 경우 양기석으로 정의되므로 이는 고용체 관계인 두 종 모두가 산출됨을 의미하며 이는 XRD 분석결과와도 일치했다. BSEM 이미지 분석을 통해 양기석-투각섬석 형성과정에서의 잔류조직을 관찰한 결과 백운석-투각섬석-투휘석으로 이어지는 일련의 전진변성단계의 잔류조직과 투휘석-투각섬석-활석으로 이어지는 후퇴변성단계의 잔류조직이 관찰되었다. 이들 연구 결과를 종합해 볼 때, 탄산염암에서 발생하는 석면은 열수변질작용으로 형성되는 것으로 사료되며 또한 비석면형의 결정이 풍화와 침식을 받는 경우 잠재적으로 석면형으로 발달 가능성이 있으므로 관리가 필요할 것으로 사료된다.

Keywords

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR) (2001) Toxicological profile for asbestos. ATSDR, Division of Toxicology/Toxicology Information Branch, Atlanta GA, USA, p.23-56, p.149-186.
  2. Becklake, M.R. (1976) Asbestos-related diseases of the lung and other organs: Their epidemiology and implications for clinical practice. Am Rev Respir Dis, v.114, n.1, p.187-227.
  3. Bergantz, D.M. (1991) Chemical and physical characterization of plutons. In: Kerrick, D.M.(eds.), contact metamorphism. Review in Mineralogy, v.26, p.13-42.
  4. Bucher, K. and Frey, M. (1994) Petrogenesis of metamorphic rocks. Mineral and Petrology, p.171-189.
  5. Choi, J.K., Paek, D.M. and Paik, N.W. (1998) The production, the use, the number of workers and exposure level of asbestos in Korea. Korean Industrial Hygiene Association Journal., v.8, n.2, p.242-253.
  6. Ferry, J.M. (1994) Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones. Mineralogy and Petrology, v.79, p.719-736.
  7. Ferry, J.M. (1996) Prograde and retrograde fluid flow during contact metamorphism of siliceous carbonate rocks from the Ballachulish aureole, scotland. Mineral and Petrology, v.124, p.235-254. https://doi.org/10.1007/s004100050189
  8. Hendrickx, M. (2009) Carbonate-hosted asbestos occurrences in South Australia: review of geology and implications for mesothelioma. Australian Journal of Earth Sciences. v.56, p.639-654. https://doi.org/10.1080/08120090902825172
  9. Ienhower, J.P. and London, D. (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa $H_2O$. Mineralogy and Petrology, v.127, p.17-29. https://doi.org/10.1007/s004100050262
  10. Kim, D.H. and Hwang, J.H. (1982) Geological report of the Daesan-Eigog sheet (1:50,000). Kore institute of Energy and Resources, 27p.
  11. Leake, B.E. (1978) Nomenclature of amphiboles. American Mineralogist, v.63, p.1023-1053.
  12. Lira, R. and Ripley, E. (1992) Hydrothermal alteration and REE-Th mineralization at the Rodeo De Los Molles deposit, La Chacras batholith, central Argentina. Mineralogy and Petrology, v.110, p.370-386. https://doi.org/10.1007/BF00310751
  13. London, D. (1987) Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus and fluorine. Geochimica et Cosmochimica Acta, v.51, p.403-420. https://doi.org/10.1016/0016-7037(87)90058-5
  14. Luo, S., Liu X., Mu S., Tsai S.P., Wen C.P. (2003) Asbestos related diseases from environmental exposure to crocidolite in Da-Yao, China: Review of exposure and epidemiological data. Occupational and Environmental Medicine, v.60, p.35-42. https://doi.org/10.1136/oem.60.1.35
  15. Mcdonald, J.C., Armstrong B., Case B. (1989) Mesothelioma and asbestos fiber types: Evidence from lung tissue analyses. Cancer, v.63, p.1544-1574. https://doi.org/10.1002/1097-0142(19890415)63:8<1544::AID-CNCR2820630815>3.0.CO;2-G
  16. Meeker, G.P., Lowers, H.A., Swayze, G.A., Van Gosen, B.S., Sutley, S.J., and Brownfield, I.K., (2006) Mineralogy and morphology of amphiboles observed in soils and rocks in El Dorado Hills, California: December 2006, U.S. Geological Survey Open-File Report 2006-1362, 47p.
  17. Nash, W.P. (1993) Fluorine iron biotite from the Honeycomb Hills rhyolite. Utah: The halogen record of decomposition in a silicic magma. American Mineralogist, v.78, p.1301-1040.
  18. Wagner, J.C., Sleggs, C.A., Marchand, P. (1960) Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape province. British Journal of Industrial Medicine, v.17, p.260-271.
  19. Webster, J.D. and Duffield, W.A. (1991) Volatiles and lithophile elements in Taylor Creek rhyolite: Constraints from glass inclusion analysis. American Mineralogist, v.76, p.1628-1645.
  20. Woo, Y.K. and Suh, M.C. (2000) Petrological study on the ultramafic rocks in Choongnam area. Journal of The Geological Society of Korea., v.21, n.3, p.323-336.