• Title/Summary/Keyword: Chat-GPT

Search Result 262, Processing Time 0.027 seconds

Analysis of Discriminatory Patterns in Performing Arts Recognized by Large Language Models (LLMs): Focused on ChatGPT (거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로)

  • Jiae Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.401-418
    • /
    • 2023
  • Recently, the socio-economic interest in Large Language Models (LLMs) has been growing due to the emergence of ChatGPT. As a type of generative AI, LLMs have reached the level of script creation. In this regard, it is important to address the issue of discrimination (sexism, racism, religious discrimination, ageism, etc.) in the performing arts in general or in specific performing arts works or organizations in a large language model that will be widely used by the general public and professionals. However, there has not yet been a full-scale investigation and discussion on the issue of discrimination in the performing arts in large-scale language models. Therefore, the purpose of this study is to textually analyze the perceptions of discrimination issues in the performing arts from LMMs and to derive implications for the performing arts field and the development of LMMs. First, BBQ (Bias Benchmark for QA) questions and measures for nine discrimination issues were used to measure the sensitivity to discrimination of the giant language models, and the answers derived from the representative giant language models were verified by performing arts experts to see if there were any parts of the giant language models' misperceptions, and then the giant language models' perceptions of the ethics of discriminatory views in the performing arts field were analyzed through the content analysis method. As a result of the analysis, implications for the performing arts field and points to be noted in the development of large-scale linguistic models were derived and discussed.

A Study on the Utilization of Digital Learning Support Tools in the Field of French Studies Education (프랑스학 교육 분야의 디지털 학습지원 매체 활용에 관한 연구)

  • Kim yeonjoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.685-695
    • /
    • 2023
  • This study aimed to investigate the current utilization and implications of digital learning support media in the field of French studies, and to explore future research directions. To achieve this, we conducted a comprehensive review of the use of digital media in various learning processes within French studies. Additionally, we examined the direct application of ChatGPT, an emerging technology, to learning by extending its use to foreign language and education fields. Our findings indicate that the application of digital learning support media in French studies is somewhat limited, with selective use in processes such as online class support media, pre-class learning, efficient learning and interaction, and self-directed learning. In the case of ChatGPT, our research found that no studies have been conducted within French studies, and very few studies have been conducted on its practical application in other educational fields. While ChatGPT has a wide range of applications and has shown positive effects on learners, ethical concerns have been raised regarding the quality, source, and reliability of information. Therefore, future research in French studies should focus on educational application and effectiveness verification in university teaching and learning situations, as well as interdisciplinary convergence with digital learning support media.

Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media (텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로)

  • Jae-Hoon Choi;Sung-Byung Yang;Sang-Hyeak Yoon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.347-373
    • /
    • 2023
  • As the significance of ESG (Environmental, Social, and Governance) management amplifies in driving sustainable growth, this study delves into and compares ESG trends and interrelationships from both corporate and societal viewpoints. Employing a combination of Latent Dirichlet Allocation Topic Modeling (LDA) and Semantic Network Analysis, we analyzed sustainability reports alongside corresponding social media datasets. Additionally, an in-depth examination of social media content was conducted using Joint Sentiment Topic Modeling (JST), further enriched by Semantic Network Analysis (SNA). Complementing text mining analysis with the assistance of ChatGPT, this study identified 25 different ESG topics. It highlighted differences between companies aiming to avoid risks and build trust, and the general public's diverse concerns like investment options and working conditions. Key terms like 'greenwashing,' 'serious accidents,' and 'boycotts' show that many people doubt how companies handle ESG issues. The findings from this study set the foundation for a plan that serves key ESG groups, including businesses, government agencies, customers, and investors. This study also provide to guide the creation of more trustworthy and effective ESG strategies, helping to direct the discussion on ESG effectiveness.

GPT-based Coding Process for Consistency in a Collaborative Environment (협업 환경에서의 일관성 확보를 위한 GPT 기반 코딩 프로세스)

  • Hanmin Jung;Jung Hoon Park;Suhyeon Yoo
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.437-439
    • /
    • 2023
  • 본 연구는 프로그래밍 협업 환경에서 생성형 AI인 ChatGPT-4를 활용한 코딩 프로세스를 제안한다. 일관성 있는 결과를 얻기 위해 프롬프트 생성, GPT 실행, 의사코드 변환, 코드 비교, 동일 코드 생성 여부 판단, 테스트 실행, 동일 결과 생성 여부 판단, 코드 검사 및 수정의 8단계를 거친다. 팀 프로젝트와 페어 프로그래밍 등의 다양한 협업 환경에 적용 가능한 이 프로세스를 통해 생성형 AI를 효과적으로 활용할 수 있음을 보여주었다는 점에서 그 의미가 있다. 본 연구는 생성형 AI를 활용한 협업 환경에서의 코딩이 본격적으로 이루어질 것으로 예상되는 이 시점에서, 인간-AI 협업 환경에서의 코딩 효율성 및 일관성을 높일 수 있을 것으로 기대한다. 이러한 연구는 인간과 AI가 함께 작업하는 미래를 위한 기초를 마련하는 데 중요한 역할을 할 것이다.

Prompt Engineering for Dark Web Ecosystem Analysis Based on Generative Artificial Intelligence (생성형 인공지능 기반의 다크웹 생태계 분석을 위한 프롬프트 엔지니어링)

  • Eun-Seon Ryu;Kyu-na Park;Seo-Yi Baik;Seongmin Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.646-647
    • /
    • 2024
  • 사이버 범죄가 증가함에 따라 익명성을 보장하는 암시장인 다크웹 내 불법적인 활동에 대한 모니터링의 중요성이 커졌다. 최근 다양한 분야에서 ChatGPT 의 쓰임이 주목받고 있듯이 다크웹에서도 전용 GPT 가 등장하였으며, 다크웹 생태계를 분석하고 정보를 수집하는데 이러한 다크웹 전용 생성형 인공지능 모델을 활용할 수 있다. 본 연구에서는 다크웹 GPT 에서 불법 행위와 관련된 질의를 통해 정보를 수집하고 해당 정보가 표면웹과 다크웹 상에서 다르게 쓰이고 있음을 확인함으로써 수사를 위한 다크웹 전용 GPT 활용 가능성 및 프롬프트 엔지니어링의 필요성을 탐구한다.

Empowering Emotion Classification Performance Through Reasoning Dataset From Large-scale Language Model (초거대 언어 모델로부터의 추론 데이터셋을 활용한 감정 분류 성능 향상)

  • NunSol Park;MinHo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.59-61
    • /
    • 2023
  • 본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.

  • PDF

Developing Programming Education Software with Generative AI (생성형 인공지능을 활용한 프로그래밍 교육 소프트웨어 개발)

  • Do-hyeon Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.589-595
    • /
    • 2023
  • Artificial intelligence(AI) is spurring advancements in EdTech, the merger of technology and education. This includes the creation of effective learning materials and personalized student experiences. Our study focuses on developing a programming education software that employs state-of-the-art generative AI. Our software also includes prompts optimized for programming code analysis, which are based on the well-known ChatGPT API. Furthermore, the necessary functions for acquiring programming skills were created with a user interface and developed as a question-and-answer template function based on an AI chatbot. The objective of this study is to guide the development of educational programmes that make use of generative AI.

Exploring the Relationship Between Machine and Human Performance in Natural Language Processing Tasks (자연어 처리 태스크에 대한 기계와 인간의 성능 상관관계 연구)

  • Seoyoon Park;Heejae Kim;Seong-Woo Lee;Yejee Kang;Yeonji Jang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.485-490
    • /
    • 2023
  • 언어 모델 발전에 따라 사람과 유사하게 글을 생성하고 태스크를 수행하는 LLM들이 등장하고 있다. 하지만 아직까지도 기계와 사람의 수행 과정에 초점을 맞추어 차이점을 드러내는 연구는 활성화되지 않았다. 본 연구는 자연어 이해 및 생성 태스크 수행 시 기계와 인간의 수행 과정 차이를 밝히고자 하였다. 이에 이해 태스크로는 문법성 판단, 생성 태스크로는 요약 태스크를 대상 태스크로 선정하였고, 기존 주류 사전학습 모델이었던 transformer 계열 모델과 LLM인 ChatGPT 3.5를 사용하여 실험을 진행하였다. 실험 결과 문법성 판단 시 기계들이 인간의 언어적 직관을 반영하지 못하는 양상을 발견하였고, 요약 태스크에서는 인간과 기계의 성능 판단 기준이 다름을 확인하였다.

  • PDF