During the COVID-19 pandemic, the use of video classes and real-time online education has increased, but the lack of interaction between instructors and learners remains a challenging problem to be resolved. This paper designs and implements a learning support system that utilizes a digital human to improve faculty-student interaction, which plays an important role in increasing the educational effect and satisfaction of real-time online classes. In this paper, a digital human participates in a class as a virtual learner and asks questions raised by other learners through an anonymous chat system to the instructor on behalf of the learners. In addition, as a class facilitator, the digital human analyzes the lecturer's speech in real time and provides it to the learner in the form of a summary of the class, thereby facilitating faculty-student interaction. In order to confirm that the proposed system can be used in actual online real-time classes, we apply our system to Zoom classes. Experimental results show that facilitated Q&A and real-time class summaries are successfully provided through our digital human-based learning support system.
Kim, Bo-Hyeon;Park, Jong-Moon;Lee, Myung-Joon;Park, Yang-Soo
Journal of the Korea Society of Computer and Information
/
v.16
no.1
/
pp.101-115
/
2011
PECOLE (Peer-to-Peer Collaborative Environment) is a P2P-based multimedia distributed collaborative environment supporting a collaborative workspace which is composed of a variety of collaborative applications such as multi-chat, video conferencing, screen sharing and etc. Unfortunately, due to the PECOLE's simple group management, it is impossible to perform collaboration activities while joining multiple groups. In this paper, we present the design and implementation of PECOLE+ which is an extension of PECOLE. PECOLE+ resolves the drawback of PECOLE by providing the Group Management Service and the Workspace Management Service. The Group Management Service provides functionalities such as creating groups, joining multiple groups, and searching groups, and etc. The Workspace Management Service provides each group with an associated workspace, supporting the execution of collaborative applications over the workspace. In addition, any collaborative applications with the provided plug-in interfaces can be executed over the workspace as a PECOLE+ collaborative application.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.491-494
/
2020
최근 언어 모델(Language model)의 기술이 발전함에 따라, 자연어처리 분야의 많은 연구들이 좋은 성능을 내고 있다. 정해진 주제 없이 인간과 잡담을 나눌 수 있는 오픈 도메인 대화 시스템(Open-domain dialogue system) 분야에서 역시 이전보다 더 자연스러운 발화를 생성할 수 있게 되었다. 언어 모델의 발전은 응답 선택(Response selection) 분야에서도 모델이 맥락에 알맞은 답변을 선택하도록 하는 데 기여를 했다. 하지만, 대화 모델이 답변을 생성할 때 일관성 없는 답변을 만들거나, 구체적이지 않고 일반적인 답변만을 하는 문제가 대두되었다. 이를 해결하기 위하여 화자의 개인화된 정보에 기반한 대화인 페르소나(Persona) 대화 데이터 및 태스크가 연구되고 있다. 페르소나 대화 태스크에서는 화자마다 주어진 페르소나가 있고, 대화를 할 때 주어진 페르소나와 일관성이 있는 답변을 선택하거나 생성해야 한다. 이에 우리는 대용량의 코퍼스(Corpus)에 사전 학습(Pre-trained) 된 언어 모델을 활용하여 더 적절한 답변을 선택하는 페르소나 대화 시스템에 대하여 논의한다. 언어 모델 중 자기 회귀(Auto-regressive) 방식으로 모델링을 하는 GPT-2, DialoGPT와 오토인코더(Auto-encoder)를 이용한 BERT, 두 모델이 결합되어 있는 구조인 BART가 실험에 활용되었다. 이와 같이 본 논문에서는 여러 종류의 언어 모델을 페르소나 대화 태스크에 대해 비교 실험을 진행했고, 그 결과 Hits@1 점수에서 BERT가 가장 우수한 성능을 보이는 것을 확인할 수 있었다.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.34
no.4
/
pp.222-228
/
2023
There are two categories of online crimes related to children and adolescents: those committed by adolescents and those committed against children and adolescents. While recent trends in criminal law show consensus on strengthening punishment in cases of crimes against children and adolescents, there are mixed stances in cases of juvenile delinquency. One perspective emphasizes strict punishment, whereas the other emphasizes dispositions aligned with human rights. While various forms of online crime share the commonality in that the main part of the criminal act occurs online, they can be categorized into three types: those seeking financial gain, those driven by sexual motives, and those engaged in bullying. Among these, crimes driven by sexual motives are the most serious. Second-hand trading fraud and conditional (sexual) meeting fraud fall under the category of seeking financial gain and occur frequently. Crimes driven by sexual motives include obscenity via telecommunication, filming with discrete cameras, child and adolescent sexual exploitation material, fake video distribution, and blackmail/coercion using intimate images/videos ("sextortion"). These crimes lead to various legal issues such as whether to view vulgar acronyms or body cams that teenagers frequently use as simple subcultures or crimes, what criteria should be applied to judge whether a recorded material induces sexual desire or shame, and at what stage sexual grooming becomes punishable. For example, sniping posts, KakaoTalk prisons, and chat room explosions are tricky issues, as they may or may not be punished depending on the case. Particular caution should be exercised against the indiscriminate application of a strict punishment-oriented approach to the juvenile justice system, which is being discussed in relation to online sexual offenses. In the punishment case of online crime, juvenile offenders with a high potential for future improvement and reform must be treated with special consideration.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.3
/
pp.451-461
/
2024
Recently, various AI chatbots based on large language models have been released. Chatbots have the advantage of providing users with quick and easy information through interactive prompts, making them useful in various fields such as question answering, writing, and programming. However, a vulnerability in chatbots called "prompt injection attacks" has been proposed. This attack involves injecting instructions into the chatbot to violate predefined guidelines. Such attacks can be critical as they may lead to the leakage of confidential information within large language models or trigger other malicious activities. However, the vulnerability of Korean prompts has not been adequately validated. Therefore, in this paper, we aim to generate malicious Korean prompts and perform attacks on the popular chatbot to analyze their feasibility. To achieve this, we propose a system that automatically generates malicious Korean prompts by analyzing existing prompt injection attacks. Specifically, we focus on generating malicious prompts that induce harmful expressions from large language models and validate their effectiveness in practice.
Objective : This study aims to assess the potential of utilizing large language models in pattern identification education by developing a simulated patient with fatigue and dual deficiency of the heart-spleen pattern. Methods : A simulated patient dataset was constructed using the clinical practice examination module provided by the National Institute for Korean Medicine Development. The dataset was divided into patient characteristics, sample questions, and responses, and utilized to design the system, assistant, and user prompts, respectively. A web-based interface was developed using the Django framework and WebSocket. Results : We developed a simulated fatigue patient representing dual deficiency of the heart-spleen pattern through prompt engineering. To make practical tools, we further implemented web-based interfaces for the examinee's and evaluator's roles. The interface for examinees allows one to examine the simulated patient and provides access to a personalized number for future access. In addition, the interface for evaluators included a page that provided an overview of each examinees' chat history and evaluation criteria in real-time. Conclusion : This study is the first development of an educational tool integrated with a large language model for pattern identification education, which is expected to be widely applied to Korean medicine education.
Purpose The innovation capability nowadays has become increasingly prominent in the universities not only for schools but also for teachers. However, due to less attention to the knowledge utilization and management, also some objective constraints, which caused the low level of the innovation capacity for our universities teachers under the current development in China. Meanwhile, transactive memory system (TMS) and knowledge sharing are important contents in knowledge management. The combination of both systems will contribute to a much more comprehensive understanding and performance of knowledge management. The purpose of this study is to investigate the structural relationships between TMS, knowledge sharing, and innovation capability among Chinese university teachers' teams, and to propose the practical implication to integrate effectively internal knowledge of the team to improve innovation capability. Design/methodology/approach In order to exam and verify the hypothesis proposed, we developed a questionnaire with 16 survey items, and each item comes with a five-point Likert-type scale. Hyperlink of online questionnaire was shared through WeChat. It's collected 201 responses from 14 universities in China, and the responders are teaching groups' leaders. And all together 191 responses were filtered out as the valid samples. And we analyze the data set and test research hypotheses by using SPSS 22.0 and AMOS 22.0. Findings All hypotheses are supported. The results reveal that knowledge sharing plays an important role in this study as the mediating role. TMS is positively associated with the innovation capability. And the knowledge sharing plays a significant role as mediating value between them, and influences the TMS's effect on innovation capability. It's thus cleared that if our teachers could well communicate, exchange and collaborate with other teachers in the same group, the innovation capability among the teachers would be improved effectively.
Park, Chan;Jung, Seok-In;Han, Cheol-Dong;Seong, Dong-Ook;Yoo, Jae-Soo;Yoo, Kwan-Hee
The Journal of the Korea Contents Association
/
v.9
no.3
/
pp.361-371
/
2009
LAMS(learning activity management system)[1] is one of the useful tools for designing and managing effectively the learning activities such as web search, chat, forum, grouping, and board. Even if LAMS has been upgraded to support the methods for making e-Learning contents conveniently, it does not have a method to communicate with external educational contents (EEC) made by external tools like Flash, Java, Visual C++, and so on. LAMS, which has been operated on Web environment, should manage all EECs like video and dynamic educational contents as educational contents in LAMS database. However, the current LAMS does not support the functionalities which can provide information of EECs to LAMS database and can also access any information about EECs from the database yet. In this paper, we propose the communication mechanism between the LAMS and EECs for solving the problem. In special, the mechanism makes many statistical data by using the information, and provides them for reflecting in education, and can control various learning management that was impossible under the original LAMS. Based on the proposed mechanism, teachers using LAMS can make more various educational contents and can manage them in the system.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.1
/
pp.56-61
/
2022
In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.
The contextual subjective well-being (SWB) of context-aware system users can be very helpful in recommending relevant mental health services, especially for those who struggle with mental illness due to a metabolic syndrome or melancholia. Self-surveying measuring or auto-sensing methods have been suggested to monitor users' SWB. However, self-surveying measuring method is not inappropriate for a context-aware service due to requesting personal data in a manual and hence obtrusive manner. Moreover, auto-sensing methods still suffer from accuracy problem to be applied in mental health services. Hence, the purpose of this paper is to propose a contextual SWB estimation method to estimate the user's mental health in unobtrusive and accurate manners. This method is timely in that it acquires context data from the user's literal responses, which expose their temporal feeling. In particular, we developed a measuring method based on exposed feeling verbs and degree adverbs in chat and other text-based communications which show anger or negative feelings. Based on the proposed contextual SWB degree estimation method, we developed an idea of well-being life care recommendation. From the experiment with actual drivers, we demonstrated that the proposed method accurately estimate the user's degree of negative feelings even though it does not require a self-survey.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.