• 제목/요약/키워드: Charge-discharge process

검색결과 202건 처리시간 0.028초

Preparation and Electrochemical Properties of LiFePO4-PSS Composite Cathode for Lithium-ion Batteries

  • Nguyen, Hiep Van;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.177-180
    • /
    • 2012
  • In this study, we prepared $LiFePO_4$- poly (sodium 4-styrenesulfonate) (PSS) composite by the hydrothermal method and ball-milling process. Different wt% PSS were added to $LiFePO_4$. The cathode electrodes were made from mixtures of $LiFePO_4$-PSS: SP-270: PVDF in a weighting ratio of 70%: 25%: 5%. $LiFePO_4$-PSS powders were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical properties of $LiFePO_4$-PSS/Li batteries were analyzed by cyclic voltammetry, charge/discharge tests, and AC impedance spectroscopy. A Li/$LiFePO_4$-PSS battery with 4.75 wt% PSS shows the best electrochemical properties, with a discharge capacity of 128 mAh/g.

플라즈마 디스플레이 채널을 위한 단일 소프트-스위칭 다단계 에너지 회수 회로 드라이버 (Single Soft-Switching Multi-Level Energy Recovery Circuit Driver for Plasma Display Panel)

  • 하꼬보 아기용;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.413-416
    • /
    • 2006
  • The power source of an AC-PDP fur sustainer circuit is operated in high-voltage and high frequency switching during the process required to achieve the gas discharge current to generate light in a PDP panel. Since PDP has the characteristics of a pure capacitive load, the displacement current that occurs during charge and discharge generates considerable reactive power. An auxiliary circuitry called Energy Recovery Circuit (ERC) reduces the capacitive displacement current. However, this auxiliary topology also bears high stress in its components. In this paper, a multilevel voltage wave shaping sustainer circuit with auxiliary ERC characteristics for an AC-PDP driver is proposed. A comparative analysis and experimental results are presented.

  • PDF

Synthesis of Cathode Material-Nickel Sulfides by Mechanical Alloying for Sodium Batteries

  • Liu, Xiaojing;Ahn, Hyo-Jun;Ahn, In-Shup
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.182-188
    • /
    • 2012
  • In this study, fine cathode materials $Ni_3S_2$ and $NiS_2$ were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/$Ni_3S_2$ and Na/$NiS_2$ show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • 박영욱;김종순;권혁조;서동화;김성욱;홍지현;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon;Hah, Hoe Jin;Lee, Tae jin;Lee, Jae Gil;Lee, Jeong Beom;Kim, Jongjung;Soon, Jiyong;Ryu, Ji Heon;Kim, Jae Jeong;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권1호
    • /
    • pp.15-24
    • /
    • 2017
  • A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

Synthesis and Electrochemical Properties of Li3V2(PO4)3-LiMnPO4 Composite Cathode Material for Lithium-ion Batteries

  • Yun, Jin-Shik;Kim, Soo;Cho, Byung-Won;Lee, Kwan-Young;Chung, Kyung Yoon;Chang, Wonyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.433-436
    • /
    • 2013
  • Carbon-coated $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials are first reported in this work, prepared by the mechanochemical process with a complex metal oxide as the precursor and sucrose as the carbon source. X-ray diffraction pattern of the composite material indicates that both olivine $LiMnPO_4$ and monoclinic $Li_3V_2(PO_4)_3$ co-exist. We further investigated the electrochemical properties of our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials using galvanostatic charging/discharging tests, where our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite electrode materials exhibit the charge/discharge efficiency of 91.9%, while $Li_3V_2(PO_4)_3$ and $LiMnPO_4$ exhibit the efficiency of 87.7 and 86.7% in the first cycle. The composites display unique electrochemical performances in terms of overvoltage and cycle stability, displaying a reduced gap of 141.6 mV between charge and discharge voltage and 95.0% capacity efficiency after $15^{th}$ cycles.

리튬이온이차전지용 고효율 음극(SiO-Graphite) (High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery)

  • 신혜민;도칠훈;김동훈;김효석;하경화;진봉수;김현수;문성인;김기원;오대희
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.47-50
    • /
    • 2008
  • 현재 상용화 되어있는 흑연의 저용량 문제를 해결하기 위해 실리콘이나 주석계 등 고용량 비탄소계 음극전극재료들이 연구되고 있다. 이 중 산화실리콘(SiO)은 초기 충전(환원)과정에서 Li이 삽입되면서 $Li_2O$생성으로 비가역 비용량이 발생하여 초기 싸이클에서 쿨롱효율이 낮고, 싸이클링에 따라 리튬 탈 삽입 과정의 비용량이 증가하는 특징으로 실제의 전지를 설계할 시 문제점을 가진다. 본 연구에서는 고용랑 특성을 나타내는 비탄소계 실리콘을 포함하는 리튬이차전지용 음극활물질과 흑연의 복합체를 제조하여 흑연으로 실리콘의 부피팽창을 완화시키고, 사이클 특성을 향상시키는 실리콘(SiO-Graphite) 재료를 개발하고, 산화실리콘과 흑연 복합체의 높은 비가역 용량의 해소와 싸이클에 따른 리튬 탈삽입 과정의 용량증가를 해소하기 위한 전처리를 통하여 초기 효율을 향상한 전극의 제조에 대하여 연구하였다.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • 전기화학회지
    • /
    • 제11권2호
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.