• Title/Summary/Keyword: Charge-discharge process

Search Result 202, Processing Time 0.03 seconds

Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge (펄스 코로나 방전에 의한 액체상 페놀 전환 특성)

  • Lee, Hyun-Don;Chung, Jae-Woo;Cho, Moo-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.

The Characteristics of Vanadium based Composite Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 복합양극의 특성)

  • Kim Jong-Jin;Son Won-Keun;Kim Jae-Yong;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • A new treatment of $LiV_3O_8$ has been proposed for improving its electrochemical behavior as a cathode material for secondary lithium batteries. Lithium trivanadate, $LiV_3O_8$, can be prepared in a finely dispersed form by dehydration of aqueous lithium trivanadate gels. The ultrasonic treatment method for Liv30s has been examined in comparison with $LiV_3O_8$ prepared by solutionmethod. The ultrasonically treated products in water were characterized by XRD (X-ray diffractometry), TGA (thermogravimetric analysis) and SEM (scanning electron microscopy). These measurements showed that the ultrasonic treatment process of aqueous $LiV_3O_8$ caused a decrease in crytallinity and considerable increased in specific surface area and interlayer spacing. The product, ultrasonically treated in water for 2 h, showed a high initial discharge capacity and was charge-discharge cycled without large capacity loss. The ultrasonic treated Liv30s can improve not only the specific capacity, but also the cycling behavior

Preparation of MgO Protective layer by reactive magnetron Sputtering (반응성 스퍼트링에 의한 MgO 유전체 보호층 형성에 관한 연구)

  • Ha, H. J.;Lee, W. G.;Ryu, J. H.;Song, Y.;Cho, J. S.;Park, C. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.59-62
    • /
    • 1996
  • Plasma displays (PDP) as a large area wall-hanging display device are rabidly developed with flat CRT, TPT LCD and etc. Especially, AC Plasma Display Panels(AC PDPs) have the inherent memory function which is effective for large area displays. The memory function in AC PDPs is caused by the accumulation of the electrical charge on the protecting layer formed on the dielectric layer. This MgO protective layer prevents the dielectric layer from sputtering by ion in discharge plasma and also has the additional important roll in lowering the firing voltage due to the large secondary electron emission coefficient). Until now, the MgO Protective layer is mainly formed by E-Beam evaporation. With increasing the panel size, this process is difficult to attain cost reduction, and are not suitable for large quantity of production. To the contrary, the methode of shuttering are easy to apply on mass production and to enlarge the size of the panel and shows the superior adhesion and uniformity of thin film. In this study, we have prepared MgO protective layer on AC PDP Cell by reactive magnetron sputtering and studied the effect of MgO layer on the surface discharge characteristics of ac PDP.

  • PDF

Pretreatment of SiO/C Composite Anode of Lithium ion Secondary Battery for High coulombic Efficiency and High Specific Capacity (리튬이차전지용 산화실리콘-흑연 복합체 고효율 음극의 전처리 특성)

  • Shin, Hye-Min;Veluchamy, Angathevar;Kim, Dong-Hun;Chung, Young-Dong;Kim, Hyo-Seok;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.43-44
    • /
    • 2007
  • SiO and graphite composite has been prepared by adopting high energy ball milling technique. The anode material shows high initial discharge and charge capacity values of 1138 and 568 mAh/g, respectively. Since the materials formed during initial discharge process the nano silicon/$Li_4SiO_3\;and\;Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversible capacity$(Li_2O)$ will deliver higher reversible capacity. In this study, pretreatment method of constant current-constant voltage (CC-CV) Provided high coulombic efficiency of SiO/C composite electrode removing the greater part of irreversible capacity.

  • PDF

Development of a Returnable Folding Plastic Box RFID Module for Agricultural Logistics using Energy Harvesting Technology (에너지 하베스팅 기술을 활용한 농산물 물류용 리턴어블 접이식 플라스틱 상자 RFID 모듈 개발)

  • Jong-Min Park;Hyun-Mo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • Sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. In this study, the amount of voltage and current generated was measured by applying the PSD profile random vibration test of the electronic vibration tester and ISTA 3A according to the time of Anodized Aluminum Oxide (AAO) pore widening of the manufactured TENG device Teflon and AAO. The discharge and charging tests of the integrated module during the random simulated transport environment and the recognition distance of RFID were measured while agricultural products (onion) were loaded into the returnable folding plastic box. As a result, it was found that AAO alumina etching processing time to maximize TENG performance was optimal at 31 min in terms of voltage and current generation, and the integrated module applied with the TENG module showed a charging effect even during the continuous use of RFID, so the voltage was kept constant without discharge. In addition, the RFID recognition distance of the integrated module was measured as a maximum of 1.4 m. Therefore, it was found that the surface condition of AAO, a TENG element, has a great influence on the power generation of the integrated module, and due to the characteristics of TENG, the power generation increases as the surface dries, so it is judged that the power generation can be increased if the surface drying treatment (ozone treatment, etc.) of AAO is applied in the future.

Design of a CMOS Dual-Modulus Prescaler Using New High-Speed Low-Power TSPC D-Flip Flops (새로운 고속 저전력 TSPC D-플립플롭을 사용한 CMOS Dual-Modulus 프리스케일러 설계)

  • Oh, Kun-Chang;Lee, Jae-Kyong;Kang, Ki-Sub;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.152-160
    • /
    • 2005
  • A prescaler is an essential building block for PLL-based frequency synthesizers and must satisfy high-speed and low-power characteristics. The design of D-flip flips used in the prescaler implementation is thus critical. Conventional TSPC D-flip flops suffer from glitches, unbalanced propagation delay, and unnecessary charge/discharge at internal nodes in precharge phase, which results in increased power consumption. In this paper a new dynamic D-flip flop is proposed to overcome these problems. Glitches are minimized using discharge suppression scheme, speed is improved by making balanced propagation delay, and low power consumption is achieved by removing unnecessary discharge. The proposed D-flip flop is employed in designing a 128/129 dual-modulus prescaler using $0.18{\mu}m$ CMOS process parameters. The designed prescaler operates up to 5GHz while conventional one can operate up to 4.5GHz under same conditions. It consumes 0.394mW at 4GHz that is a 34% improved result compared with conventional one.

  • PDF

Synthesis of Lithium Manganese Oxide by a Sol-Gel Method and Its Electrochemical Behaviors (졸-겔 방법에 의한 LiMn2O4의 합성 및 전기화학적 거동)

  • Jeong, Euh-Duck;Moon, Sung-Wook;Lee, Hak-Myoung;Won, Mi-Sook;Yoon, Jang-Hee;Park, Deog-Su;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2003
  • A precursor of lithium manganese oxide was synthesized by mixing $(CH_3)_2CHOLi\;with\;Mn(CH_3COO)_2{\cdot}4H_2O$ in ethanol using a sol-gel method, then heat-treated at $400^{\circ}C\;and\;800^{\circ}C$ in air atmosphere. The condition of heat treatment was determined by thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTA). The characterization of the lithium manganese oxide was done by X-ray diffraction (XRD) spectra and scanning electron microscopy (SEM). The electrochemical characteristics of lithium manganese oxide electrode for lithium ion battery were measured by cyclic voltammetry (CV), chronoamperometry and AC impedance method using constant charge/discharge process. The electrochemical behaviors of the electrode have been investigated in a 1.0M $LiClO_4/propylene$ carbonate electrolyte solution. The diffusivity of lithium ions, $D^+\;_{Li}\;^+$, as determined by AC impedance technique was $6.2\times10^{-10}cm^2s^{-1}$.

Electrochemical Characteristics of Sn Added Li4Ti5O12 as an Anode Material (Sn이 첨가된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Jeong, Choong-Hoon;Kim, Sun-Ah;Cho, Byung-Won;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • $Li_4Sn_xTi_{5-x}O_{12}$ was manufactured by high energy ball milling (HEBM) and used as an anode material for lithium ion battery. Various amount of $SnO_2$was added to $Li_4Ti_5O_{12}$ and heated at different temperatures. The purpose of this research was to see the effect of $SnO_2$ addition into $Li_4Ti_5O_{12}$. Manufactured samples were analyzed by TGA, XRD, SEM, PSA. Battery cycler was used to test the charge/discharge properties of active materials. Heat treatment temperature of $800^{\circ}C$ was needed to make a stable structure of $Li_4Sn_xTi_{5-x}O_{12}$ and the particle size distribution was $0.2{\sim}0.6\;{\mu}m$. Charge/discharge process was repeated for 50 cycles at room temperature. The initial capacity was 168mAh/g and the voltage plateau was observed at 1.55V(Li/$Li^+$).

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds (커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능)

  • Jin Ju Yoo;Nayeon Ko;Su Hyun Oh;Jeongyeon Oh;Mijung Kim;Jaeeun Lee;Taeshik Earmme;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-533
    • /
    • 2023
  • The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.

Synthesis of Li4Ti5O12 Thin Film with Inverse Hemispheric Structure

  • Lee, Sung-Je;Jung, Kwang-Hee;Park, Bo-Gun;Kim, Ho-Gi;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.360-364
    • /
    • 2010
  • $Li_4Ti_5O_{12}$ thin film with inverse hemispheric structure was fabricated on a Pt/Ti/$SiO_2$/Si substrate by the sol-gel and dip coating method for use as an anode for 3-dimensional (3D) thin-film batteries. Polystyrene (PS) beads of 400 nm diameter were used to prepare the template for the inverse hemispheric structure. A coating solution prepared using precursor sources was dropped on the template-deposited substrates, which were then calcinated at $400^{\circ}C$. The template was removed by calcination, and the inverse hemispheric structure was successfully formed by an annealing process. The cyclic performance during high-rate charge/discharge processes of the $Li_4Ti_5O_{12}$ film with inverse hemispheric structure was superior to that of the flat $Li_4Ti_5O_{12}$ film.