DOI QR코드

DOI QR Code

Electrochemical Characteristics of Sn Added Li4Ti5O12 as an Anode Material

Sn이 첨가된 Li4Ti5O12 음극활물질의 전기화학적 특성

  • Jeong, Choong-Hoon (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Sun-Ah (Department of Chemical Engineering, Chungbuk National University) ;
  • Cho, Byung-Won (Battery Research Center, KIST) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2010.10.20
  • Accepted : 2011.01.05
  • Published : 2011.02.28

Abstract

$Li_4Sn_xTi_{5-x}O_{12}$ was manufactured by high energy ball milling (HEBM) and used as an anode material for lithium ion battery. Various amount of $SnO_2$was added to $Li_4Ti_5O_{12}$ and heated at different temperatures. The purpose of this research was to see the effect of $SnO_2$ addition into $Li_4Ti_5O_{12}$. Manufactured samples were analyzed by TGA, XRD, SEM, PSA. Battery cycler was used to test the charge/discharge properties of active materials. Heat treatment temperature of $800^{\circ}C$ was needed to make a stable structure of $Li_4Sn_xTi_{5-x}O_{12}$ and the particle size distribution was $0.2{\sim}0.6\;{\mu}m$. Charge/discharge process was repeated for 50 cycles at room temperature. The initial capacity was 168mAh/g and the voltage plateau was observed at 1.55V(Li/$Li^+$).

리튬이온이차전지용 음극활물질 $Li_4Sn_xTi_{5-x}O_{12}$ 화합물을 high energy ball milling (HEBM)법을 사용하여 제조하였다. $Li_4Ti_5O_{12}$$SnO_2$의 첨가량을 달리하여 혼합 제조 후, 열처리를 통하여 합성하였다. 본 연구는 Sn의 첨가물에 따른 $Li_4Ti_5O_{12}$의 전기화학적 성능의 변화를 살펴보고자 하였다. 제조된 시료들의 물리적 특성을 조사하기 위해 XRD, SEM, PSA 등의 분석장비를 사용하였다. 충/방전 시험기를 사용하여 1.0~3.0 V 전압범위에서 제조된 활물질의 충/방전 특성을 알아보았다. 열처리 온도에 따라 합성한 $Li_4Sn_xTi_{5-x}O_{12}$의 구조적 특성과 전기화학적 성능을 볼 때, 합성 열처리 온도는 $800^{\circ}C$가 필요함을 확인하였으며, 합성물질 크기의 분포는 $0.2{\sim}0.6\;{\mu}m$임을 확인하였다. 충/방전 실험을 50 cycle 동안 상온에서 진행하였으며, Sn 첨가조건에 따른 가장 우수한 성능을 나타낸 초기용량은 168 mAh/g으로 측정 되었으며, 1.55 V(Li/$Li^+$) 영역에서 평탄전압을 나타내었다.

Keywords

References

  1. C. H. Jeong, E. K. Lee, J. M. Bang, B. H. Lee, B. W.Cho, and B. K. Na, “Effect of $Al^{3+}$ Dopant on the Electrochemical Characteristics of Spinel-type $Li_4Ti_5O_{12}$” Crean Technology, 14(3), 171 (2008).
  2. A. G. Ritchie, “Recent developments and future prospects for Lithium Rechargeable Batteries” J. Power Sources, 96(1), 1 (2001). https://doi.org/10.1016/S0378-7753(00)00673-X
  3. G. Dixon, R. S. Morris, and S. Dallek, “Non-flammable polyphosphonate electrolytes” J. Power Sources, 138, 274 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.016
  4. X. M. Wang, E. Yasukawa, and S. Kasuya, “Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-ion Batteries” J. Electrochem. Soc., 148(10), A1058 (2001). https://doi.org/10.1149/1.1397773
  5. M. S. Dresselhaus, G Dresselhaus, P. C. Eklund, and D. D. L. Chung, “Lattice Vibrations in Graphite and Intercalation Compounds of Graphite” Mater. Sci. and Eng., 31, 141 (1997).
  6. R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi, and O. Yamamoto, “Carbon as Negative Electrodes in Lithium Secondary Cells” J. Power Sources, 26, 535 (1989). https://doi.org/10.1016/0378-7753(89)80175-2
  7. M. Y. Song and M. Shon, “Variation of the Electrochemical Properties of $LiMnO_4 $ with the Calcining Temperature” J. Kor. Ceram. Soc., 39(6), 523 (2002). https://doi.org/10.4191/KCERS.2002.39.6.523
  8. Z. X. Shu, R. S. McMillan, and J. J. Murray, “Electrochemical Intercalation of Lithium into Graphite” J. Electrochem. Soc., 140(4), 922 (1993). https://doi.org/10.1149/1.2056228
  9. J. S. Kim, W. Y. Yoon, and K. S. Yoo, “Enhancement of cell Performance for an Carbon Anode in Li-ion Battery” J. Kor. Ceram. Soc., 38(8), 755 (2001).
  10. E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, “Improved Graphite Anode for Lithium-ion Batteries” J. Electrochem. Soc., 143, L4 (1996). https://doi.org/10.1149/1.1836372
  11. W. Liu, X. Huang, Z. Wang, H. Li, and L. Chen, “Studies of stannic Oxide as an Anode Material for Lithium-ion Batteries” J. Electrochem. Soc., 1, 145 (1999).
  12. I. A. Courtney and J. R. Dahn, “Electrochemical and in Situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites” J. Electrochem. Soc., 6, 144 (1997).
  13. H. Huang, E. M. Kelder, L. Chen, and J. Schoonman, “Electrochemical Characteristics of $Sn_{1-x}Si_xO_2$ as Anode for Lithium-ion Batteries” J. Power Sources, 81-82, 362 (1999). https://doi.org/10.1016/S0378-7753(98)00219-5
  14. M. Masatoshi, U. Satoshi, Y. Eriko, K. Keiji, and I. Shinji, “Development of long life Lithium-ion Battery for Power Storage” J. Power Sources, 101, 53 (2001). https://doi.org/10.1016/S0378-7753(01)00554-7
  15. N. Kiyoshi, N. Ryosuke, M. Tomoko, and M. Hiroshi, “Preparation of particulate $Li_4Ti_5O_{12}$ having Excellent Characteristics as an Electrode Active Material for Power Storage Cells” J. Power Sources, 117, 131 (2003). https://doi.org/10.1016/S0378-7753(03)00169-1

Cited by

  1. Template Synthesis of Ordered-Mesoporous Tin Oxide for Lithium-ion Battery Anode Materials vol.17, pp.2, 2014, https://doi.org/10.5229/JKES.2014.17.2.86