• 제목/요약/키워드: Charge-discharge density

검색결과 185건 처리시간 0.024초

바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구 (Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate)

  • 김정명;박희성
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.777-784
    • /
    • 2016
  • 바나듐 전해질 산화-환원 흐름전지(vanadium redox flow batteries, VRFBs)는 간헐적 에너지 저장 시스템의 에너지 저장장치로 사용된다. VRFBs는 재료 및 동작조건에 따라 성능의 차이를 보이며, 각 성능특성에 따른 VRFBs개발이 요구된다. 본 연구에 사용된 단위셀은 반응면적 $25cm^2$이며, 전해액은 0.6의 충전상태를 나타낸다. 방전전류밀도를 0에서 $520mA/cm^2$ 까지 변화시키면서 동시에 전해질 유량도 5mL/min에서 60mL/min까지 변화시켰다. 동일한 입구 전해액 상태에 따른 방전 성능 평가를 위해 4개의 탱크를 사용한 비순환 시스템을 구축하였다. 본 논문은 유량 및 전류밀도의 변화에 대한 단자전압을 측정하였으며, $25cm^2$ 반응면적을 가지는 바나듐계 산화-환원 유동전지 시스템의 최대전류밀도에 대한 실험식을 도출하였다.

PV 시스템 적용을 위한 새로운 에너지 저장 시스템 고찰 (A Study of New Energy Storage System for PV System)

  • 유권종;정영석;정명웅;박용성;최재호;최주엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1391-1393
    • /
    • 2002
  • There arc some problems on storage batteries which are called Secondary Battery, such as long charging time, limited cycle life, low coulomb efficiency and inaccurate residual power meter. To solve those problems, a complex system of capacitors and Super Capacitors of increased energy density. Though the capacitors alone arc not capable of delivering stable output, the accompanied circuits compensate the various characteristics all through the charge-and discharge-cycle. This paper deals with Energy Storage System with Super Capacitor for PV System Discussed in this paper are, explains the accompanied circuits of Super Capacitor which is compared with the Second Batteries.

  • PDF

활성탄소 전극의 전기화학적 특성에 대한 카본블랙 함입된 탄소나노튜브의 효과 (Influence of Carbon Black-embed Carbon Nanotubes on Electrochemical Performance of Activated Carbon-based Electrodes)

  • 김기석;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.133.1-133.1
    • /
    • 2010
  • In this work, carbon black(CBs)-embed multi-walled carbon nanotubes (MWNTs) as conductive fillers for activated carbon(ACs)-based electrodes for supercapacitor were prepared by chemical reduction of oxidized MWNTs and CBs. The effect of CBs-MWNT composites on electrochemical performances of ACs-based electrodes were investigated as a function of CB-MWNT ratio. It was found that CBs-MWNTs composites were formed by the reduction reaction of the functional groups of oxidized MWNTs and CBs. It was resulted in the conjugation of CBs onto the MWNT having high surface area and aspect ratio, leading to the enhanced electrical properties of MWNTs. The electrochemical performances, such as current density, charge-discharge, and specific capacitance of the ACs/CBs-MWNT electrodes were higher than that of ACs/MWNTs and conventional ACs/CB electrodes, which was attributed to the synergistic effect of CBs-MWNTs as a conductive filler.

  • PDF

수퍼커패시터를 이용한 상시가동형 순시전압강하 보상시스템의 개발 (Development of On-Line Type Voltage Sag Compensation Systems by Using a Supercapacitor)

  • 손진근
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.101-107
    • /
    • 2009
  • This paper deal with development of on-line type voltage sag compensation system using supercapacitor EDLC to solve the voltage sag problems which are considered to be dominant disturbances affecting the power quality. With the wide use of semiconductor devices in electrical equipment, modem-type loads are becoming increasingly sensitive to the voltage sags and the disturbances prove to be costly to industries. Supercapacitor EDLC is employed to compensate dynamically for the voltage sag of system with sensitive loads. This capacitor has higher energy density than the electrolytic capacitor. Also, this capacitor has a lot of advantage such as no maintenance, longer life cycle and faster charge-discharge time than the battery system. Therefore, in this paper, the energy design scheme of supercapacitor and the configuration technique of on-line type voltage sag compensation systems are newly introduced. According to the results of experimental of prototype 5[kVA] system, it is verified that the developed system has effectiveness of voltage sag compensation by using a supercapacitor EDLC.

반도체 소자의 정전기 완화특성 (Characteristics of Electrostatic Attenuation in Semiconductor)

  • 김두현;김상렬
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.69-77
    • /
    • 1999
  • As the use of automatic handling equipment for sensitive semiconductor devices is rapidly increased, manufacturers of electronic components and equipment need to be more alert to the problem of electrostatic discharges(ESD). Semiconductor devices such as IC, LSI, VLSI become a high density pattern of being more fragile by ESD phenomena. One of the most common causes of electrostatic damage is the direct transfer of electrostatic charge from the human body or a charged material to the electrostatic discharge sensitive devices. Accordingly, characteristics of electrostatic attenuation in domestic semiconductor devices is investigated to evaluate the ESD phenomina in the semiconductors in this paper. The required data are obtained by Static Honestmeter. Also The results in this paper can be used for the prevention of semiconductor failure by ESD.

  • PDF

Compensation of Power Fluctuations of PV Generation System by SMES Based on Interleaving Technique

  • Kim, Seung-Tak;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1983-1988
    • /
    • 2015
  • This paper proposes the enhanced application of superconducting magnetic energy storage (SMES) for the effective compensation of power fluctuations based on the interleaving technique. With increases in demand for renewable energy based photovoltaic (PV) generation system, the output power fluctuations from PV generation system due to sudden changes in environmental conditions can cause serious problems such as grid voltage and frequency variations. To solve this problem, the SMES system is applied with its superior characteristics with respect to high power density, fast response for charge and discharge operations, system efficiency, etc. In particular, the compensation capability is effectively improved by the proposed interleaving technique based on its parallel structure. The dynamic performance of the system designed using the proposed method is evaluated with several case studies through time-domain simulations.

Study on electrochemical performances of sulfur-containing graphene nanosheets electrodes for lithium-sulfur cells

  • Son, Ki-Soo;Kim, Seok
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.113-116
    • /
    • 2014
  • Due to their morphology, electrochemical stability, and function as a conducting carbon matrix, graphene nanosheets (GNS) have been studied for their potential roles in improving the performance of sulfur cathodes. In this study, a GNS/sulfur (GNS/S) composite was prepared using the infiltration method with organic solvent. The structure, morphology and crystallinity of the composites were examined using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The electrochemical properties were also characterized using cyclic voltammetry (CV). The CV data revealed that the GNS/S composites exhibited enhanced specific-current density and ~10% higher capacity, in comparison with the S-containing, activated-carbon samples. The composite electrode also showed better cycling performance for multiple charge/discharge cycles. The improvement in the capacity and cycling stability of the GNS/S composite electrode is probably related to the fact that the graphene in the composite improves conductivity and that the graphene is well dispersed in the composites.

금속산화물 전극을 사용한 고 에너지밀도 하이브리드 커패시터 특성 (Characteristics of high energy density hybrid capacitor using metal oxide electrode)

  • 윤홍진;신윤성;이종대
    • 한국응용과학기술학회지
    • /
    • 제28권3호
    • /
    • pp.329-334
    • /
    • 2011
  • The electrochemical performances of an asymmetric hybrid capacitor were investigated using $LiFePO_4$ as the positive electrode and active carbon fibers(ACF) as the negative electrode. The electrochemical behaviors of a nonaqueous hybrid capacitor were characterized by constant current charge/discharge test. The specific capacitance using $LiFePO_4$/ACF electrode turned out to be $0.87F/cm^2$ and the unit cell showed excellent cycling performance. This hybrid capacitor was able to deliver a specific energy as high as 178 Wh/kg at a specific power of 1,068 W/kg.

리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성 (The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries)

  • 김주승;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

리튬 폴리머 전지 $LiFePO_4$의 전기화학적 특성 (Electrochamical Properties of $LiFePO_4$ Electrodes for Lithium Polymer Battery)

  • 공명철;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.5-9
    • /
    • 2005
  • $LiFePO_4$ is a potential candidate for the cathode material of the lithium polymer batteries. $LiFePO_4$ cathode active materials were synthesized by coating on the $LiFePO_4$ was tried using $TiO_2$ and corbon in oreder to increase cyclic performance and electronic conductivity. Highly dispersed on the particles enhances the electronic conductivity and increases the capacity. For lithium polymer battery applications, $LiFePO_4$/SPE/Li and $LiFePO_4$-$TiO_2$/SPE/Li 'cells were characterized electrochemically by cyclic volatammetry and charge/discharge cycling. The $LiFePO_4$-carbon-$TiO_2$ cathode in PVDF-PC-EC-$LiCIO_4$ electrolyte showed high capacity at high current density.

  • PDF