• Title/Summary/Keyword: Characteristics of Mathematical Thinking

Search Result 91, Processing Time 0.025 seconds

An Analysis on Mathematical Thinking Processes of Gifted Students Using Problem Behavior Graph (PBG(Problem Behavior Graph)를 이용한 수학적 사고 과정 분석)

  • Kang, Eun-Joo;Hong, Jin-Kon
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.545-562
    • /
    • 2009
  • This study is trying to analyze characteristics of mathematical thinking processes of the mathematical gifted students in an objective and a systematic way, by using "Protocol Analysis Method"and "Problem Behavior Graph" which is suggested by Newell and Simon as a qualitative analysis. In this study, four middle school students with high achievement in math were selected as subjects-two students for mathematical gifted group and the other two for control group also with high scores in math. The thinking characteristics of the four subjects, shown in the course of solving problems, were elicited, analyzed and compared, through the use of the creative test questionnaires which were supposed to clearly reveal the characteristics of mathematical gifted students' thinking processes. The results showed that there were several differences between the two groups-the mathematical gifted student group and their control group in their mathematical talents. From these case studies, we could say that it is significant to find out the characteristics of mathematical thinking processes of the mathematical gifted students in a more scientific way, in the sense that this result can be very useful to provide them with the chances to get more proper education by making clear the nature of thinking processes of the mathematical gifted students.

  • PDF

An Analysis on Thinking Processes of Mathematical Gifted Students Using Think-aloud Method (사고구술법(思考口述法)을 이용한 수학(數學) 영재(英才)의 사고(思考) 특성(特性) 연구(硏究))

  • Hong, Jin-Kon;Kang, Eun-Joo
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.4
    • /
    • pp.565-584
    • /
    • 2009
  • This study is aimed at providing the theoretical framework of characteristics of mathematical thinking processes and structuring the thinking process patterns of the mathematical gifted students through the analysis of their cognitive thinking processes. For this purpose, this study is trying to analyze characteristics of mathematical thinking processes of the mathematical gifted students in an objective and a systematic way, by using think-aloud method. For comparative study, the analysis framework with the use of the thinking characteristic code as a content-oriented method and the problem-solving processes code as a process-oriented method was developed, and the differences of thinking characteristics between the two groups chosen by the coding system which represented the subjects' thinking processes in the form of the language protocol through thinking-aloud method were compared and analyzed.

  • PDF

Analysis on Characteristics of University Students' Problem Solving Processes Based on Mathematical Thinking Styles (수학적 사고 스타일에 따른 함수의 문제해결과정의 특징 분석)

  • Choi, Sang Ho;Kim, Dong Joong;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.153-171
    • /
    • 2013
  • The purpose of this study is to investigate characteristics of students' problem solving processes based on their mathematical thinking styles and thus to provide implications for teachers regarding how to employ multiple representations. In order to analyze these characteristics, 202 university freshmen were recruited for a paper-and-pencil survey. The participants were divided into four groups on a mathematical-thinking-style basis. There were two students in each group with a total of eight students being interviewed. Results show that mathematical thinking styles are related to defining a mathematical concept, problem solving in relation to representation, and translating between mathematical representations. These results imply methods of utilizing multiple representations in learning and teaching mathematics by embodying Dienes' perceptual variability principle.

  • PDF

A Study of Mathematically Gifted Middle School Students' of Mathematical Thinking and the Teacher's Role in Teaching and Learning about the Central Projection and Perspective Drawing (중심사영과 투시도의 작도 학습에서 나타나는 중학교 수학영재들의 수학적 사고특성과 교사의 역할)

  • Lew, Hee Chan;Kang, Kyung Min
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.921-940
    • /
    • 2013
  • This study is to analyze mathematically gifted middle school students' characteristics of mathematical thinking and the teacher's role in teaching and learning about the central projection and perspective drawing. And it will help to develop teaching and learning materials for the mathematically gifted. The result of this study is as followings : mathematically gifted middle school students show the various characteristics of mathematical thinking like as intuitive insight, generalization, logical thinking & mathematical abstraction and so on, and the teacher plays roles as instructional designer, facilitator, technical assistant and counselor.

  • PDF

수학 영재 판별 도구 개발 - 수학 창의적 문제 해결력 검사를 중심으로 -

  • 김홍원
    • Journal of Gifted/Talented Education
    • /
    • v.8 no.2
    • /
    • pp.69-89
    • /
    • 1998
  • The purpose of this study is to develop a test which can be used in identification of the gifted students in the area of mathematics. This study was carried out for two years from 1996. Mathematical giftedness is, in this study, regarded as a result of interaction of mathematical thinking ability, mathematical creativity, mathematical task committment, background knowledge. This study presumed that mathematical thinking ability is composed of seven thinking abilities: intuitive insights, ability for information organization, ability for visualization, ability for mathematical abstraction, inferential thinking ability(both inductive and deductive thinking abilities), generalization and application ability, and reflective thinking. This study also presupposed that mathematical creativity is composed of 3 characteristics: fluency, flexibility, originality. The test for mathematical creative problem solving ability was developed for primary, middle, and high school students. The test is composed of two parts: the first part is concentrated more on divergent thinking, while the second part is more on convergent thinking. The major targets of the test were the students whose achievement level in mathematics belong to top 15~20% in each school. The goodness of the test was examined in the aspects of reliability, validity, difficulty, and discrimination power. Cronbach $\alpha$ was in the range of .60~.75, suggesting that the test is fairly reliable. The validity of the test was examined through the correlation among the test results for mathematical creative problem solving ability, I. Q., and academic achievement scores in mathematics and through the correlation between the scores in the first part and the scores in the second part of the test for mathematical creative problem solving ability. The test was found to be very difficult for the subjects. However, the discrimination power of the test was at the acceptable level.

  • PDF

An Analysis of Teacher-Student Communication and Students' Mathematical Thinking in Sixth Grade Mathematics Classrooms (초등학교 6학년 수업에서의 수학적 의사소통과 학생의 수학적 사고 분석)

  • Hong, Woo-Ju;Pang, Jeong-Suk
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.201-219
    • /
    • 2008
  • The purpose of this study was to provide useful information for teachers by analyzing various levels of teacher-student communication in elementary mathematics classes and students' mathematical thinking. This study explored mathematical communication of 3 classrooms with regard to questioning, explaining, and the source of mathematical ideas. This study then probed the characteristics of students' mathematical thinking in different standards of communication. The results showed that the higher levels of teacher-student mathematical communication were found with increased frequency of students' mathematical thinking and type. The classroom that had a higher level of Leacher-student mathematical communication was exhibited a higher level of students' mathematical thinking. This highlights the importance of mathematical communication in mathematics c1asses and the necessity of further developing skills of mathematical communication.

  • PDF

An analysis of characteristics of mathematically gifted high school students' thinking in design activities using GrafEq (GrafEq를 활용한 디자인 활동에서 나타나는 수학영재아의 사고특성분석)

  • Lee, Ji Won;Shin, Jaehong;Lee, Soo Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.3
    • /
    • pp.539-560
    • /
    • 2013
  • The purpose of this study was to investigate characteristics of mathematically gifted high school students' thinking in design activities using GrafEq. Eight mathematically gifted high school students, who already learned graphs of functions and inequalities necessary for design activities, were selected to work in pairs in our experiment. Results indicate that logical thinking and mathematical abstraction, intuitive and structural insights, flexible thinking, divergent thinking and originality, generalization and inductive reasoning emerged in the design activities. Nonetheless, fine-grained analysis of their mathematical activities also implies that teachers for gifted students need to emphasize both geometric and algebraic aspects of mathematical subjects, especially, algebraic expressions, and the tasks for the students are to be rich enough to provide a variety of ways to simplify the expressions.

  • PDF

An Analysis of Metacognition of Elementary Math Gifted Students in Mathematical Modeling Using the Task 'Floor Decorating' ('바닥 꾸미기' 과제를 이용한 수학적 모델링 과정에서 초등수학영재의 메타인지 분석)

  • Yun, Soomi;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.257-276
    • /
    • 2023
  • Mathematical modeling can be described as a series of processes in which real-world problem situations are understood, interpreted using mathematical methods, and solved based on mathematical models. The effectiveness of mathematics instruction using mathematical modeling has been demonstrated through prior research. This study aims to explore insights for mathematical modeling instruction by analyzing the metacognitive characteristics shown in the mathematical modeling cycle, according to the mathematical thinking styles of elementary math gifted students. To achieve this, a mathematical thinking style assessment was conducted with 39 elementary math gifted students from University-affiliated Science Gifted Education Center, and based on the assessment results, they were classified into visual, analytical, and mixed groups. The metacognition manifested during the process of mathematical modeling for each group was analyzed. The analysis results revealed that metacognitive elements varied depending on the phases of modeling cycle and their mathematical thinking styles. Based on these findings, didactical implications for mathematical modeling instruction were derived.

Effects of Spreadsheet-used Instruction on Statistical Thinking and Attitude (스프래드시트를 활용한 수엽이 통계적 사고 및 태도에 미치는 효과)

  • Lee, Jong-Hak;Kim, Won-Kyoung
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.185-212
    • /
    • 2011
  • The purpose of this study is to analyze whether spreadsheet-used instruction can improve statistical thinking ability and attitude and also to identify what characteristics of statistical thinking is constructed. For this study, a subject of 2 classes were randomly selected among the 12 classes of the 11th grader in D high school and designated one class as the experimental group and the other class as the control group. Eight hours of the spread sheet-used instruction and the traditional textbook-oriented instruction had been carried out in each class. The research findings are as follows. First, the spread sheet-used instruction is shown to be more effective in enhancing statistical thinking than the traditional textbook-oriented instruction. Second, the spread sheet-used instruction is shown to be more effective in improving statistical attitude than the traditional textbook-oriented instruction. Third, students have shown the various characteristics of statistical thinking in the data descriptive process, data arrange-summary process, data representing process, and data analying process through the spread sheet-used instructions. Hence, the spread sheet-used instruction is recommended in teaching statistics.

Systematic review on the research of mathematical beliefs in Korean mathematical education (국내 수학교육의 수학적 신념 연구에 관한 체계적 분석)

  • Lee, Seonyoung;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.59 no.4
    • /
    • pp.331-355
    • /
    • 2020
  • The purpose of this study is to systematically analyze the results of the existing research on mathematical beliefs, compare and synthesize the valuable results and to suggest implications for mathematical beliefs and research. As a result of checking the methodological quality of 59 articles in total using the MQA(Methodological Quality Assessment) checklist, most of them surveyed mathematical beliefs using questionnaires, and most of the studies were conducted on prospective teachers. As a result of systematic review, the conceptual characteristics of mathematical beliefs, object-specific characteristics, and the educational influence of mathematical beliefs were able to synthesize the meaning. Mathematical beliefs had important educational influences in the practice of teachers, students, and math classes. As the results of the study, we emphasize the importance of changing the beliefs of students and teachers in order to solve the problem of mathematical education, where students rely on private education rather than activity thinking, and teachers do not pay attention to students thinking. It has been shown that concrete support is needed for practicing participatory instruction focused on mathematical thinking.