• Title/Summary/Keyword: Char Combustion

Search Result 119, Processing Time 0.025 seconds

Numerical Investigation for Combustion Characteristics of Vacuum Residue in a Test Furnace

  • Sreedhara, S.;Huh, Kang-Y.;Park, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.121-127
    • /
    • 2006
  • It has become inevitable to search for alternative fuels due to severe energy crisis these days. Use of alternative fuels, which are typically of lower quality, tends to increase environmental pollution, including formation of nitrogen oxides (NOx). In this paper performance of vacuum residue has been investigated experimentally as well as numerically in typical operating conditions of a furnace. Heat release reaction is modeled as sequential steps of devolatilization, simplified gas phase reaction and char oxidation as that for pulverized coal. Thermal and fuel NOx are predicted by conditional estimation of elementary reaction rates and are compared against measured experimental data. On the overall reasonable agreement is achieved for spatial distributions of major species, temperature and NOx for all test cases.

  • PDF

Combustion Characteristics of the Pinus Rigida and Castanea Savita Using Cone Calorimeter (콘칼로리미터를 이용한 소나무와 밤나무의 연소특성)

  • Chung, Yeong-Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.319-323
    • /
    • 2009
  • One of the limitation of wood as building material is its flammability. The purpose of this paper is to examine the combustion properties of the pinus rigida and castanea savita which are grown in Korea and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO and $CO_2$ production and smoke obscuration. The $HRR_{mean}$ of the castanea savita at $50kW/m^2$ was $160.7kW/m^2$ in comparison with $150.7kW/m^2$ for the pinus rigida. Castanea savita showed an increase of retardant properties attributed to char formation compared with that of pinus rigida. The castanea savita has high $CO_{peak}$ yield and high CO/$CO_2$ yield compared with that of pinus rigida.

An Experimental Study on the Combustion Characteristics of CWM Single Droplet (CWM 단일액적의 연소특성에 관한 연구)

  • Park, Chong-Sang;Lee, Tae-Won;HA, Jong-Yul;Chung, Sung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

Dynamic Modeling of Gasification Reactions in Entrained Coal Gasifier (석탄 가스화 반응의 동적 거동 전산 모사)

  • Chi, Jun-Hwa;Oh, Min;Kim, Si-Moon;Kim, Mi-Young;Lee, Joong-Won;Kim, Ui-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.386-401
    • /
    • 2011
  • Mathematical models for various steps in coal gasification reactions were developed and applied to investigate the effects of operation parameters on dynamic behavior of gasification process. Chemical reactions considered in these models were pyrolysis, volatile combustion, water shift reaction, steam-methane reformation, and char gasification. Kinetics of heterogeneous reactions between char and gaseous agents was based on Random pore model. Momentum balance and Stokes' law were used to estimate the residence time of solid particles (char) in an up-flow reactor. The effects of operation parameters on syngas composition, reaction temperature, carbon conversion were verified. Parameters considered here for this purpose were $O_2$-to-coal mass ratio, pressure of reactor, composition of coal, diameter of char particle. On the basis of these parametric studies some quantitative parameter-response relationships were established from both dynamic and steady-state point of view. Without depending on steady state approximation, the present model can describe both transient and long-time limit behavior of the gasification system and accordingly serve as a proto-type dynamic simulator of coal gasification process. Incorporation of heat transfer through heterogenous boundaries, slag formation and steam generation is under progress and additional refinement of mathematical models to reflect the actual design of commercial gasifiers will be made in the near futureK.

A Kinetic Studies of Pyrolysis and Combustion of Sewage Sludge (하수 슬러지의 열분해 및 연소 Kinetics 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.47-53
    • /
    • 2014
  • Effective treatment and energy conversion technologies are necessary due to the ban of the dumping of organic waste including the sewage sludge. In this study, the kinetics of pyrolysis and combustion were derived in a TGA and thermobalance reactor, which is essential for thermal conversion of sewage sludge to energy. Three steps are shown for the pyrolysis in TGA and the different pre-exponential factors and activation energies are derived depending on the temperature range. Three models of gassolid reaction were applied to the reaction kinetics analysis for the combustion of sewage sludge char and shrinking core model was an appropriated model. Apparent activation energy and pre-exponential factor were evaluated and the effect of oxygen partial pressure was examined.

Cross-section micrography of burning pulverized coal particles (연소중 미분탄의 단면관측)

  • 한재현;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.717-725
    • /
    • 1989
  • An experimental investigation on the combustion behavior of pulverized coal particles was performed using the cross-section micrography techniques while sample coal particles were collected in-situ from the flow reactor. The coal particles were representative of pulverized bituminous coal undergoing a raped pyrolysis and combustion, however, quenched at the time when the particles were deposited onto a sample plate. The internal structure of coal was observed to change as deposited. Upon injection into a flow reactor, bituminous coal particles showed many holes which represented internal pore formation during the pyrolysis. The relative portion of the remaining matrix of coal was decreasing as the residence time progressed. This direct observation of cross-section of burning particles enabled better understanding of the coal combustion behavior.

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

ASPEN 코드를 이용한 석탄가스화기내 주요 변수들의 가스화 성능에 대한 영향

  • 이승종;마수만;윤용승;김형택
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.37-41
    • /
    • 1993
  • ASPEN 코드를 이용하여 석탄가스화기에 영향을 주는 온도, 압력, 산화제 및 증기를 변수로 선택하여 각 변수의 변화에 따른 가스화기의 온도 및 생성가스의 조성 변화를 살펴보았다. 석탄가스화기는 combustion zone, char gasification zone 및 gas shift reaction zone의 3부분으로 나뉘어 각 영역의 특성에 맞게 모사 되었다. 온도와 산화제는 석탄가스화기에 커다란 영향을 주는 요소로 나타났고, 압력과 증기 또한 주요 변수인 것으로 나타났다. 본 연구의 궁극적 목적은 석탄가스화기의 운전 조건을 최적화하는데 있다.

  • PDF

An Experimental Investigation of the Effect of Particle Size on the Combustion Characteristics of Pulverized Sub-Bituminous Coal with Low Calorific Value by Using an LFR System (LFR 장치를 이용한 입자 크기 변화에 따른 저열량 아역청 미분탄의 연소특성에 관한 실험적 연구)

  • Jeon, Chung-Hwan;Kim, Yong-Gyun;Kim, Jae-Dong;Kim, Gyu-Bo;Song, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • In this study, the effect of particle size on the combustion characteristics of pulverized sub-bituminous coal was experimentally investigated. A laminar-flow-entrained reactor was designed and implemented to realize the desired heating ratio and temperature corresponding to the combustion atmosphere of a pulverized-coal-fueled furnace. The flame length and structure of burning particles according to different sizes were investigated. Coal combustion processes were clearly distinguished by direct visual observation of the flame structure. The onset point of volatile ignition is greatly affected by changes in the particle size, and the burning time of the volatiles is least affected by changes in the particle size. The length and instability of char flame also increase with the increase of the particle size. However, the char consumption rate within the residential time remains nearly constant.

On the flame propagation in a spark-ignited gasoline engine (전기점화식 내연기관에 있어서 화염전파에 관한 연구)

  • 이종원;이형인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 1982
  • The purpose of this study is to investigate the flame propagation phenomenon in the combustion chamber of spark-ignition gasoline engine for the idling condition. by means of four ion probes located through the cylinder head, the time intervals for the flame to arrive at the respective probes are read on th visicorder char. As results, the flame is considered to initiate after some ignition delay and to propagate through the central space of combustion chamber with rather constant speed on the order of 25m/sec, and thereafter to be slowed down approaching the wall. Additionally, the retardation of flame in the wall boundary layer could be inferred. The maximum pressure is developed when the flame nearly touches the wall diagonal to the spark plug. And some features of flame propagation are elucidate.

  • PDF