Combustion Characteristics of the Pinus Rigida and Castanea Savita Using Cone Calorimeter

콘칼로리미터를 이용한 소나무와 밤나무의 연소특성

  • Chung, Yeong-Jin (Department of Fire and Disaster Prevention, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2009.04.14
  • Accepted : 2009.06.05
  • Published : 2009.06.30

Abstract

One of the limitation of wood as building material is its flammability. The purpose of this paper is to examine the combustion properties of the pinus rigida and castanea savita which are grown in Korea and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO and $CO_2$ production and smoke obscuration. The $HRR_{mean}$ of the castanea savita at $50kW/m^2$ was $160.7kW/m^2$ in comparison with $150.7kW/m^2$ for the pinus rigida. Castanea savita showed an increase of retardant properties attributed to char formation compared with that of pinus rigida. The castanea savita has high $CO_{peak}$ yield and high CO/$CO_2$ yield compared with that of pinus rigida.

건자재로서 나무 결함중의 하나는 그의 가연성이다. 본 연구의 목적은 한국에서 자란 리기다 소나무와 밤나무의 연소성질을 시험하는 것과 건자재로서의 사용에 대한 바람직한 특성을 알아내는 것이다. 콘칼로리미터(ISO 5660-1)는 열방출율과 CO, $CO_2$ 발생과 연기차폐와 같은 연기지수를 측정하는 데 이용되어 졌다. $50kW/m^2$의 열속하에서 밤나무의 평균열방출율은 소나무의 평균열방출율 $150.77kW/m^2$ 과 비교하여 $160.7kW/m^2$ 을 나타내었다. 밤나무는 소나무에 비해 숯생성으로 인한 증대된 난연성을 보였다. 밤나무는 소나무에 비하여 높은 CO 수율과 높은 CO/$CO_2$ 수율을 나타내었다.

Keywords

References

  1. Babrauskas, V. 1984. Development of cone calorimeter-A bench-scale heat release rate apparatus based on oxygen consumption, Fire and Materials 8(2): 81-95. doi: 1002/fam.810080206 https://doi.org/10.1002/fam.810080206
  2. Babrauskas, V. 2001. Ignition of wood, pp. 71-88. In : A Review of the State of the Art. Interflam 2001, Interscience Communications Ltd., London, UK
  3. Babrauskas, V. and Grayson, S.J. 1992. Heat release in Fires, E & FN Spon (Chapman and Hall), London, UK. pp. 644
  4. Bilbao, R., Mastral J.F., Aldea, J., Ceama, N. Bertran, N., Lana, J.A. 2001. Experimental and theretical study of the ignition and smoldering of wood including convective effects, Combustion Flame 126: 1363-1372 https://doi.org/10.1016/S0010-2180(01)00251-6
  5. Boonmee, N. and Quintiere, J.G. 2002. Glowing the ignition and burning rate of wood. pp. 289-296. In: Twentyninth Symposium (international) on combustion, The Combustion Institute, 29
  6. Boonmee, N. and Quintiere, J.G. 2004. Glowing ignition of wood: the onset of surface combustion. pp. 2303-2310. In: Thirtieth Symposium (international) on Combustion, The Combustion Institute. 30 https://doi.org/10.1016/j.proci.2004.07.022
  7. Carle, J.B. and Brown J.L.1976. Wood as a source of solid fuel. In : Watt, G.S. ed. a review, New Zealand Forest Service, Auckland. NZ
  8. Chirico, A.D., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., and Audiso, G. 2002. Flame retardants for polypropylene based on lignin, Polymer Degradation and Stability 79: 139-145 https://doi.org/10.1016/S0141-3910(02)00266-5
  9. Chung, Y.J. 2007. Flame retardancy of veneers treated by ammonium salts, Journal of the Korean Industrial & Engineering Chemistry 18: 251-254
  10. DeHaan, J.D. 2002. Kirks's fire investigation, pp. 84-112. fifth edition, Prentice Hall
  11. Delichatsios, M., Paroz, B. and Bhargava, A. 2003. Flammability properties for charring materials, Fire Safety Journal 38: 219-228 https://doi.org/10.1016/S0379-7112(02)00080-2
  12. Drysdale, D. 1996. An introduction to fire dynamics, john Wily & Sons, U.S.A
  13. EN 13823, 2002. Reaction to Fire Tests for Building Products. Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item
  14. Glasius, M., Ketzel, M., Wahlin, P., Jensen, B., Monster, J., Berkowicz, R. and Palmgren F. 2006. Impact of wood combustion on particle levels in a residential area in Denmark, Atmospheric Environment 40(37): 7115-7124. doi :10.1016/j.atmosenv.2006.06.047
  15. Hirschler, M. 2001. Thermal decomposition and chemical composition, pp. 239-300, American Chemical Society Symposium Series 797
  16. Hull, R.T. and Paul Keith, T. 2007. Bench-scale assessment of combustion toxicity-a critical analysis of current protocols, Fire Safety Journal 42(5): 340-365. doi: 10.1016/j.firesaf.2006.12.006
  17. ISO 3130, 1975. Wood-Determination of Moisture Content for Physical and Mechanical Tests
  18. ISO 5660-1, 2002. Reaction-to-Fire Tests nHeat Release, Smoke Production and Mass Loss RateñPart 1: Heat Release Rate (Cone Calorimeter Method)-Part 2: Smoke Production Rate (Dynamic Measurement)
  19. Kubler, H. 1980. Wood as building and hobby material, pp.139-149 J. John Wiley & Sons, Inc., U.S.A
  20. Michael, J.S. 1999. Predicting the ignition and burning rate of wood in the cone calorimeter using an intergral model, pp.30-46. NIST GCR 99-775, U.S.A
  21. Pearce, F.M., Khanna, Y.P. and Raucher, D. 1981. Thermalanalysis in polymer flammability, Chap. 8. In : Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A
  22. Shafizadeh, F. and DeGroot, W. F. 1976. Combustion characteristics of cellulosic fuels. In : Shafizadeh F., Sarkenen K.V. and Tillman D.A. edds. Thermal Uses and Properties of Carbohydrates and Lignins, Academic Press, New York, U.S.A
  23. Tissari, J., Hytonen, K. Lyynranen, J. and Jokinienmi J. 2007. A nodel field measurement method for determining fire particle and gas emissions from residential wood combustion, Atmospheric Environment 41(37): 8330-8344 https://doi.org/10.1016/j.atmosenv.2007.06.018
  24. Tran, H.C. and White R.H. 1992. Burning rate of solid wood measured in a heat release calorimeter, Fire Mater, 16: 197-206 https://doi.org/10.1002/fam.810160406
  25. Yang, L., Chen, X., Zhou, X. and Fan, W. 2003. The pyrolysis and ignition of charring matrials under an external heat flux, Combustion and Flame 133: 407-413 https://doi.org/10.1016/S0010-2180(03)00026-9