• Title/Summary/Keyword: Chaotic Behavior

Search Result 125, Processing Time 0.028 seconds

A Study on the Application of Simple Phytoplankton Model for Reservoir (저수지에 대한 조류 모형의 적용성 검토)

  • 이홍근;이준호
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 1991
  • The purpose of this study was development of a simple phytoplankton model for reservoir and applied DaeCheung reservoir. The effects of light intensity, PO$_{4}$-P, settling rate and flushing loss on phytoplankton growth are analyzed. This paper describes as investigation of the potential of simple phytoplankton models to d/splay chaotic instability, but given the observation of chaotic behavior in other simple simulation systems, such behavoir may actually be real fluctuation in the system response.

  • PDF

Verification on Chaotic Behavior of Cutting Force in Metal Cutting (절삭가공시 절삭력 신호의 카오스적거동에 관한 규명)

  • 구세진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.96-100
    • /
    • 1996
  • So far the analysis and modeling of cutting process is studied commonly assumed as being linear stochastic or chaotic without experimental verification. So we verified force signals of cutting process(ball end-milling) is low-dimensional chaos by calculating Lyapunov Exponents. reconstructing attractor using time delay coordinates and calcula-ting it's fractal dimension.

  • PDF

EXTENDING THE APPLICATION OF THE SHADOWING LEMMA FOR OPERATORS WITH CHAOTIC BEHAVIOUR

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.521-525
    • /
    • 2011
  • We use a weaker version of the celebrated Newton-Kantorovich theorem [3] reported by us in [1] to find solutions of discrete dynamical systems involving operators with chaotic behavior. Our results are obtained by extending the application of the shadowing lemma [4], and are given under the same computational cost as before [4]-[6].

Dynamical Rolling Analysis of a Vessel in Regular Beam Seas

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.325-331
    • /
    • 2018
  • This paper deals with the dynamical analysis of a vessel that leads to capsize in regular beam seas. The complete investigation of nonlinear behaviors includes sub-harmonic motion, bifurcation, and chaos under variations of control parameters. The vessel rolling motions can exhibit various undesirable nonlinear phenomena. We have employed a linear-plus-cubic type damping term (LPCD) in a nonlinear rolling equation. Using the fourth order Runge-Kutta algorithm with the phase portraits, various dynamical behaviors (limit cycles, bifurcations, and chaos) are presented in beam seas. On increasing the value of control parameter ${\Omega}$, chaotic behavior interspersed with intermittent periodic windows are clearly observed in the numerical simulations. The chaotic region is widely spread according to system parameter ${\Omega}$ in the range of 0.1 to 0.9. When the value of the control parameter is increased beyond the chaotic region, periodic solutions are dominant in the range of frequency ratio ${\Omega}=1.01{\sim}1.6$. In addition, one more important feature is that different types of stable harmonic motions such as periodicity of 2T, 3T, 4T and 5T exist in the range of ${\Omega}=0.34{\sim}0.83$.

Developing a Simulator of the Capture Process in Towed Fishing Gears by Chaotic Fish Behavior Model and Parallel Computing

  • Kim Yong-Hae;Ha Seok-Wun;Jun Yong-Kee
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • A fishing simulator for towed fishing gear was investigated in order to mimic the fish behavior in capture process and investigate fishing selectivity. A fish behavior model using a psycho-hydraulic wheel activated by stimuli is established to introduce Lorenz chaos equations and a neural network system and to generate the components of realistic fish capture processes. The fish positions within the specified gear geometry are calculated from normalized intensities of the stimuli of the fishing gear components or neighboring fish and then these are related to the sensitivities and the abilities of the fish. This study is applied to four different towed gears i.e. a bottom trawl, a midwater trawl, a two-boat seine, and an anchovy boat seine and for 17 fish species as mainly caught. The Alpha cluster computer system and Fortran MPI (Message-Passing Interface) parallel programming were used for rapid calculation and mass data processing in this chaotic behavior model. The results of the simulation can be represented as animation of fish movements in relation to fishing gear using Open-GL and C graphic programming and catch data as well as selectivity analysis. The results of this simulator mimicked closely the field studies of the same gears and can therefore be used in further study of fishing gear design, predicting selectivity and indoor training systems.

Chaotic Behavior of a Double Pendulum Subjected to Follower Force (종동력을 받는 이중진자의 혼돈운동 연구)

  • 장안배;이재영
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

The Melnikov Analysis of the Pitch Dynamics of a Gravity Gradient Satellite (중력구배 인공위성의 Pitch운동의 Melnikov해석)

  • Lee, Mok-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1427-1432
    • /
    • 2009
  • The pitch motion of a generic gravity gradient satellite is investigated in terms of chaos. The Melnikov method is used for detecting the onset of chaotic behavior of the pitch motion of a gravity gradient satellite. The Melnikov method determines the distance between stable and unstable manifolds of a perturbed system. When stable and unstable manifolds transverse on the Poincare section, the resulting motion can be chaotic. The Melnikov analysis indicates that the pitch dynamics of a generic gravity gradient satellite can be chaotic when the orbit eccentricity is small.

Numerical Study on Chaotic Dynamics of Repeated Impacts with Friction - Vibratory Bowl Feeders (마찰력이 개재된 반복충돌 혼돈 동역학의 수치해석적 연구 -진동보울피더)

  • Han, In-Hwan;Lee, Yun-Jae;Yoon, Koo-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.143-152
    • /
    • 1996
  • The vibratory bowl feeder is the most versatile of all hopper feeding devices for small engineering parts, and the typical nonlinear dynamic system experiencing repeated impacts with friction. We model and analyze the dynamic behavior of a single part on the vibrating track of the bowl feeder. While the previous studies are restricted to the sliding regime, we focus our analysis on the hopping regime where the high conveying rate is available. We present the numerical analysis results for conveying rate and frictional impact process both in periodic and chaotic regimes. We examined the dynamic effects from the variation of several physical parameters, and presented the important features for the design of the vibratory bowl feeder. This research holds much potential for leverage over design problems of wide range of mechanisms and tools with repeated collisions.

  • PDF

Weld Quality Quantification through Chaotic Analysis (카오스 분석을 통한 용접 품질 정량화)

  • Cho, Jung-Ho;Farson, Dave;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.72-76
    • /
    • 2010
  • Irregular fluctuation of penetration depth in CW single mode fiber laser welding is analyzed statistically and chaotically. Among various chaos theories, one of the basic concept referred as Lyapunov exponent is applied to the analysis to quantify the irregularity of penetration. Especially, maximal Lyapunov exponent (MLE) is known as the representative value indicating chaotic degree of the system dynamics. MLE calculation method of experimental data is applied to longitudinal spiking defect in fiber laser weld. Laser power modulation is suggested as a remedy then the computed MLE value is compared to CW case. It is shown that the adoption of chaos theory, MLE computation, can be used as a measurement standard to prove the validity of the solutions to prevent the unexpected chaotic behavior of weld through this work.

Chaotic Response of a Spherical Shell to Impulsive Loading (충격력을 받는 구형 쉘의 혼돈거동 해석)

  • 이재영;강영철
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 1997
  • Engineers must be aware of possible sources of chaotic behavior. They may render conventional design predictions untrustworthy and potentially unsafe because of the sensitivity to initial conditions. Dynamic responses of a spherical shell subjected to impulsive loading which act on the center are analyzed using the finite element method. The chaotic responses are identified by the standard methods, such as displacement-time histories, Poincare maps, and phase diagrams. The responses are chaotic, but, not so sensitive to the initial conditions, and the characteristics of responses are not changed with time, in contrast to the case of the responses of beam. The Poincare points scattered in the limited area represent that the responses are chaotic, but do not show the geometric structures. The snap-through phenomena of the shell to the side of the direction of the load or of the opposite direction, is analysed by using the energy diagram.

  • PDF