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EXTENDING THE APPLICATION OF THE SHADOWING

LEMMA FOR OPERATORS WITH CHAOTIC BEHAVIOUR

Ioannis K. Argyros

Abstract. We use a weaker version of the celebrated Newton–Kantorovich

theorem [3] reported by us in [1] to find solutions of discrete dynamical

systems involving operators with chaotic behavior. Our results are ob-
tained by extending the application of the shadowing lemma [4], and are

given under the same computational cost as before [4]–[6].

1. Introduction

It is well known that complicated behaviour of dynamical systems can easily
be detected via numerical experiments. However, it is very difficult to prove
mathematically in general that a given system behaves chaotically.

Several authors have worked on various aspects of this problem, see, e.g.,
[4]–[6], and the references therein. In particular the shadowing lemma [4, p.
1684] proved via the celebrated Newton–Kantorovich theorem [3] was used in
[4] to present a computer-assisted method that allows us to prove that a discrete
dynamical system admits the shift operator as a subsystem. Motivated by this
work and using a weaker version of the Newton–Kantorovich theorem reported
by us in [1], [2] (see Theorem 2.1 that follows) we show that it is possible
to weaken the shadowing Lemma on on which the work in [4] is based. In
particular we show that under weaker hypotheses and the same computational
cost a larger upper bound on the crucial norm of operator M−1 (see (7)) is
found and the information on location of the shadowing orbit is more precise.
Other advantages have already been reported in [1]. Clearly this apporach
widens the applicability of the shadowing lemma.

2. The shadowing lemma

We need the definitions: Let D ⊆ Rk be an open subset of Rk (k a natural
number), and let f : D → D be an injective operator. Then the pair (D, f)
is a discrete dynamical system. Denote by S = l∞

(
Z,Rk

)
the space of Rk
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valued bounded sequences x = {xn} with norm ‖x‖ = supn∈Z |xn|2 . Here we
use the Euclidean norm in Rk and denote it by |·| , omitting the index 2. A δ0–
pseudo–orbit is a sequence y = {yn} ∈ DZ with |yn+1 − f (yn)| ≤ δ0 (n ∈ Z) .
A r-shadowing orbit x = {xn} of a δ0–pseudo–orbit y is an orbit of (D, f) with
|yn − xn| ≤ 2 (n ∈ Z) .

We need the following semilocal convergence theorem for Newton method
[1, page 132, Case 3 for δ = δ0].

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet differentiable operator.
Assume there exist x0 ∈ D, positive constant η, β, L0 and L such that:

F ′ (x0)
−1 ∈ L (Y,X) ,∥∥∥F ′ (x0)

−1
∥∥∥ ≤ β, (1)∥∥∥F ′ (x0)

−1
F (x0)

∥∥∥ ≤ η, (2)

‖F ′ (x)− F ′ (y)‖ ≤ L ‖x− y‖ , for all x, y ∈ D, (3)

‖F ′ (x)− F ′ (x0)‖ ≤ L0 ‖x− x0‖ , for all x ∈ D, (4)

hA = β L1 η ≤ 1, (5)

and

Ū (x0, s
∗) = {x ∈ X : ‖x− x0‖ ≤ s∗} ⊆ D,

where

s∗ = lim
n→∞

sn,

s0 = 0, s1 = η, sn+2 = sn+1 +
L (sn+1 − sn)

2 (1− L0sn+1)
(n ≥ 0) ,

L1 =
1

4
(L+ 4 L0 +

√
L2 + 8 L0 L).

Then, sequence {yn} (n ≥ 0) generated by Newton’s method

yn+1 = yn − F ′ (yn)
−1
F (yn) (n ≥ 0)

is well defined, remains in Ū (x0, s
∗) for all n ≥ 0 and converges to a unique

solution y∗ ∈ Ū (x0, s
∗) , so that estimates

‖yn+1 − yn‖ ≤ sn+1 − sn
and

‖yn − y∗‖ ≤ s∗ − sn ≤ 2η − sn
hold for all n ≥ 0.

Moreover y∗ is the unique solution of equation F (y) = 0 in U (x0, R) pro-
vided that

L0 (s∗ +R) ≤ 2

and

U (x0, R) ⊆ D.
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The advantages of Theorem 2.1 over the Newton-Kantorovich theorem [3]
have been explained in detail in [1], [2].

From now on we set X = Y = Rk.
Sufficient conditions for a δ0-pseudo-orbit y to admit a unique r-shadowing

orbit are given in the following main result.

Theorem 2.2. (Weak version of the shadowing lemma) Let D ⊆ Rk be open,
f ∈ C1,Lip (D,D) be injective, y = {yn} ∈ DZ be a given sequence, {An} be
a bounded sequence of k × k matrices and let δ0, δ,`0, ` be positive constants.
Assume that for the operator

M : S → S with {M z}n = zn+1 −Azn (6)

is invertible and ∥∥M−1∥∥ ≤ a =
1

δ +
√
`1 δ0

., (7)

where

`1 =
1

4
(`+ 4 `0 +

√
`2 + 8 `0 `).

Then, the numbers t∗, R given by

t∗ = lim
n→∞

tn (8)

and

R =
2

`0
− t∗ (9)

satisfy 0 < t∗ ≤ R, where sequence {tn} is given by

t0 = 0, t1 = η, tn+2 = tn+1 +
` (tn+1 − tn)

2

2 (1− `0tn+1)
(n ≥ 0) (10)

and

η =
δ0

1
‖M−1‖ − δ

. (11)

Let r ∈ [t∗, R] . Moreover, assume that⋃
n∈Z

U (yn, r) ⊆ D (12)

and for every n ∈ Z

|yn+1 − f (yn)| ≤ δ0, (13)

|An −Df (yn)| ≤ δ, (14)

|F ′ (u)− F ′ (0)| ≤ `0 |u| (15)

and

|F ′ (u)− F ′ (v)| ≤ ` |u− v| , (16)

for all u, v ∈ U (yn, r) .
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Then there is a unique t∗-shadowing orbit x∗ = {xn} of y. Moreover, there
is no orbit x̄ other than x∗ such that

‖x̄− y‖ ≤ r. (17)

Proof. We shall solve the difference equation

xn+1 = f (xn) (n ≥ 0) (18)

provided that xn is close to yn. Setting

xn = yn + zn (19)

and

gn (zn) = f (zn + yn)−Anzn − yn+1 (20)

we can have

zn+1 = Anzn + gn (zn) . (21)

Define D0 = {z = {zn} : ‖z‖ ≤ 2} and nonlinear operator G : D0 → S, by

(G (z))n = gn (zn) . (22)

Operator G can naturally be extended to a neighborhood of D0. Equation (21)
can be rewritten as

F (x) = M x−G (x) = 0, (23)

where F is an operator from D0 into S.
We will show the existence and uniqueness of a solution x∗ = {xn} (n ≥ 0)

of equation (23) with ‖x∗‖ ≤ r using Theorem 2.1. Clearly we need to express
η, L0, L and β in terms of

∥∥M−1∥∥ , δ0, δ, `0 and `.

(i)
∥∥∥F ′ (0)

−1
F (0)

∥∥∥ ≤ η.
Using (13), (14) and (20) we get ‖F (0)‖ ≤ δ0 and ‖G′ (0)‖ ≤ δ, since

[G′ (0) (w)]n = (F ′ (yn)−An)wn.

By (7) and the Banach lemma on invertible operators [3] we get F ′ (0)
−1

exists and ∥∥∥F ′ (0)
−1
∥∥∥ ≤ ( 1

‖M−1‖
− δ
)−1

. (24)

That is, η can be given by (11).

(ii)
∥∥∥F ′ (0)

−1
∥∥∥ ≤ β.

By (24) we can set

β =

(
1

‖M−1‖
− δ
)−1

. (25)

(iii) ‖F ′ (u)− F ′ (v)‖ ≤ L ‖u− v‖ .
We can have using (16)

|(F ′ (u)− F ′ (v)) (w)n| = |(F ′ (yn + un)− F ′ (yn + vn))wn|
≤ ` |un − vn| |wn| . (26)

Hence we can set L = `.
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(iv) ‖F ′ (u)− F ′ (0)‖ ≤ L0 ‖u‖ .
By (17) we get

|(F ′ (u)− F ′ (0)) (w)n| = |(F ′ (yn + un)− F ′ (yn + 0))wn|
≤ `0 |un| |wn| . (27)

That is, we can take L0 = `0.
Crucial condition (5) is satisfied by (7) and with the above choices of η, β, L

and L0.
Therefore the claims of Theorem 2.2 follow immediately from the conclusions

of Theorem 2.1.
That completes the proof of the theorem. �

Remark 1. In general
`0 ≤ ` (28)

holds and
`

`0
can be arbitrarily large [1]. If `0 = `, Theorem 2.2 reduces to

Theorem 1 in [4, p. 1684]. Otherwise our Theorem 2.2 improves Theorem 1 in
[4]. Indeed, the upper bound in [4, p. 1684] is given by∥∥M−1∥∥ ≤ b =

1

δ +
√

2`δ0
. (29)

By comparing (7) with (29) we deduce

b < a

(if `0 < `).
That is, we have justified the claims made in the introduction.
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