East Asian Mathematical Journal
]
Vol. 27 (2011), No. 5, pp. 521-525 | :(NMNMg

EXTENDING THE APPLICATION OF THE SHADOWING
LEMMA FOR OPERATORS WITH CHAOTIC BEHAVIOUR

ToanNis K. ARGYROS

ABSTRACT. We use a weaker version of the celebrated Newton—Kantorovich
theorem [3] reported by us in [1] to find solutions of discrete dynamical
systems involving operators with chaotic behavior. Our results are ob-
tained by extending the application of the shadowing lemma [4], and are
given under the same computational cost as before [4]-[6].

1. Introduction

It is well known that complicated behaviour of dynamical systems can easily
be detected via numerical experiments. However, it is very difficult to prove
mathematically in general that a given system behaves chaotically.

Several authors have worked on various aspects of this problem, see, e.g.,
[4]-[6], and the references therein. In particular the shadowing lemma [4, p.
1684] proved via the celebrated Newton—Kantorovich theorem [3] was used in
[4] to present a computer-assisted method that allows us to prove that a discrete
dynamical system admits the shift operator as a subsystem. Motivated by this
work and using a weaker version of the Newton—Kantorovich theorem reported
by us in [1], [2] (see Theorem 2.1 that follows) we show that it is possible
to weaken the shadowing Lemma on on which the work in [4] is based. In
particular we show that under weaker hypotheses and the same computational
cost a larger upper bound on the crucial norm of operator M~! (see (7)) is
found and the information on location of the shadowing orbit is more precise.
Other advantages have already been reported in [1]. Clearly this apporach
widens the applicability of the shadowing lemma.

2. The shadowing lemma

We need the definitions: Let D C RF be an open subset of R (k a natural
number), and let f : D — D be an injective operator. Then the pair (D, f)
is a discrete dynamical system. Denote by S = [*° (Z,Rk) the space of R*
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valued bounded sequences & = {x,} with norm ||z|| = sup,,cz |zn|,. Here we
use the Euclidean norm in R* and denote it by |-| , omitting the index 2. A §o—
pseudo—orbit is a sequence y = {y,} € D% with |y,+1 — f (yn)| < 60 (n € Z).
A r-shadowing orbit z = {z,} of a dy—pseudo—orbit y is an orbit of (D, f) with
lyn —xp| <2 (n€Z).

We need the following semilocal convergence theorem for Newton method
[1, page 132, Case 3 for § = dg].

Theorem 2.1. Let FF : D C X — Y be a Fréchet differentiable operator.
Assume there exist xg € D, positive constant n, 5, Lo and L such that:

F' (z0) ' e L(Y, X),

HF”WW < B W
|F" @) F )| < m (2)
[F' () = F' (Il < Lllz—yll, foralzyeD, (3)
|F' (z) — F' (zo)|| < Lo|x—mll, forallze€ D, (4)
ha = BLin<l, (5)
and
U(xg,8")={z € X : ||z — x| <s*} CD,
where
s = lim s,,
n— oo

L (5n+1 - Sn)
ZBnt1 7 5n) s )
2(1 = LoSn+1) 20)

(L+4Lo++L?24+8Ly L

) generated by Newton’s method

s0=10,81 =1, 8042 = Spt1 +

1

Ly ==~
!

Then, sequence {yn,} (n >0
Yni1 = yn = F' (yn) " F(yn) (0 20)

is well defined, remains in U (xg,5*) for all n > 0 and converges to a unique
solution y* € U (xg, s*), so that estimates

Hyn-‘rl - ynH < Spt1 — Sn
and
lyn —y* | < 8% — 5, <20 — sy
hold for all n > 0.
Moreover y* is the unique solution of equation F (y) = 0 in U (xo, R) pro-
vided that
LO (S* + R) < 2
and

U (l‘o,R) - D.



EXTENDING THE APPLICATION OF THE SHADOWING LEMMA 523

The advantages of Theorem 2.1 over the Newton-Kantorovich theorem [3]
have been explained in detail in [1], [2].

From now on we set X =Y = RF.

Sufficient conditions for a dy-pseudo-orbit y to admit a unique r-shadowing
orbit are given in the following main result.

Theorem 2.2. (Weak version of the shadowing lemma) Let D C R¥ be open,
f € CHEP (D, D) be injective, y = {y,} € D% be a given sequence, {A,} be
a bounded sequence of k x k matrices and let &g, .4y, L be positive constants.
Assume that for the operator

M : S — Swith {M z}, =zp41 — Az, (6)

is invertible and )
Ml <a= ———., 7
Il < e = 5 m "

where
1
6121 (€+4€0+ \/£2+8€0 K)

Then, the numbers t*, R given by

= Jlim b i

and )
R=——t* 9
% 9)

satisfy 0 < t* < R, where sequence {t,} is given by

{(tnss = tn)” (n>0) (10)

to=0,t1 =n,t =t —
0 =01 =1n,tn42 n+1+2(1—fofn+1) 2

and 5
0
=1 : (11)
Tz ~ 9
Let r € [t*, R]. Moreover, assume that
UJU@nrcD (12)
neZ
and for everyn € Z
[Ynt1 — f (yn)l < o, (13)
|F' (u) = F'(0)] < 4oyl (15)
and
[F' (u) = F' (v)] < lu—v|, (16)

for all u,v € U (yn,r) .
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Then there is a unique t*-shadowing orbit x* = {x,} of y. Moreover, there
is no orbit T other than x* such that

1z =yl <r (17)
Proof. We shall solve the difference equation
tns1 = [ (@) (0> 0) (18)
provided that z,, is close to y,,. Setting
Ty = Yn + Zn (19)
and
gn (2n) = [ (20 + yn) = Anzn — Yns1 (20)
we can have
Znt1 = Anzn + gn (20) - (21)
Define Dy = {z = {z,} : ||2]| < 2} and nonlinear operator G : Dy — S, by
(G (2)),, = gn (zn) - (22)

Operator G can naturally be extended to a neighborhood of Dy. Equation (21)
can be rewritten as

Fx)=Max—G(x)=0, (23)
where F' is an operator from Dy into S.

We will show the existence and uniqueness of a solution z* = {x,} (n > 0)
of equation (23) with [|z*|| < r using Theorem 2.1. Clearly we need to express
1, Lo, L and 3 in terms of | M~!||, 8,6, ¢ and ¢.

() |[F ) F O <n.

Using (13), (14) and (20) we get [|[F(0)|| < 0o and ||G'(0)]] < &, since
[G"(0) ()], = (F' (yn) — An) wn.

By (7) and the Banach lemma on invertible operators [3] we get F’ (0)

exists and .
i 1 -
HF/ (0) H < <|M‘1H _5) . (24)
That is, n can be given by (11).
(i) | )7 < 5.
By (24) we can set

-1

1 —1
o= () )
(iif) | (u) = F" (v)[| < L [lu = o]
We can have using (16)
[(F" (u) = F" () (w),,| = [(F" (yn +tn) = F' (yn + vn)) wa
< Lup — vp| |wa - (26)

Hence we can set L = /.
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(iv) [E” (u) = F" (0)|] < Lo [|u]-
By (17) we get
[(F" (u) = F'(0)) (w),,| = |(F (yn +tn) = F' (yn + 0)) wn|

Lo Jtun | |wn| (27)

IN

That is, we can take Ly = 4.

Crucial condition (5) is satisfied by (7) and with the above choices of 7, 3, L
and L.

Therefore the claims of Theorem 2.2 follow immediately from the conclusions
of Theorem 2.1.

That completes the proof of the theorem. O

Remark 1. In general
by </ (28)

14
holds and 7. can be arbitrarily large [1]. If ¢y = ¢, Theorem 2.2 reduces to

0
Theorem 1 in [4, p. 1684]. Otherwise our Theorem 2.2 improves Theorem 1 in
[4]. Indeed, the upper bound in [4, p. 1684] is given by

1

—1 o
) <o=

(29)

By comparing (7) with (29) we deduce
b<a

(if 49 < 0).
That is, we have justified the claims made in the introduction.
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