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11. Introduction

Unexpected rolling motion poses serious problems to the safe 

navigation of vessels. It is well known that the rolling motion of 

vessels show strong nonlinear dynamical behaviors. Harmonic, 

sub-harmonic, limit cycle and chaotic motions may occur even in 

regular beam seas. One of the important properties of chaos is 

dynamical sensitivity depending on initial conditions. Therefore, 

nonlinear behaviors of rolling motion should be examined in 

detail since it can drastically affect vessel motions. 

because the vessel motions can be changed drastically.

It is noted that the sub-harmonic frequencies are frequencies 

below the fundamental frequency of an oscillator in a ratio of 

, with  a positive integer. If     is an integer, the 

period is the time interval (sec) required to travel  (rad) 

instead of  (rad). Then the system response is said to be a 

sub-harmonic of order  (Jordan and Smith, 2007). Forced 

rolling motion with nonlinear restoring moments may have 

frequencies lower than the encountering frequency. This is known 

as sub-harmonic oscillations (Bhattacharyya, 1978). 

Nonlinear dynamical behaviors of a vessel rolling under 

external excitations have been investigated in the past years. 

With experimental methods, Francescutto and Contento (1999) 

also studied the steady rolling responses for a scale model of a 
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destroyer in regular beam seas. Using a generalized Melnikov’s 

method and Markov approach, Lin and Yim (1995) investigated 

the qualitative behavior of the chaotic motion and capsizing of a 

vessel in probability space. They developed a stochastic analysis 

procedure to examine the periodic, chaotic and capsizing 

responses of a vessel’s rolling motion with random noises and 

disturbances. Melnikov’s method is widely used to determine the 

existence of homoclinic orbits in the vector field (roll angle and 

rate). Wu and MeCue (2008) applied the extended Melnikov’s 

method to analyze the rolling motion without the constraint of 

small damping term. 

In special cases, it is reasonable to think that the rolling 

motion can be uncoupled and the center of the coordinate is 

located at the roll center (Roberts and Vasta, 2000). Neves et al. 

(1999) experimentally studied the effects of the heave and pitch 

motion of fishing vessels in longitudinal waves. Kamel (2007) 

investigated the bifurcation analysis of a coupled pitch-roll 

(2DOF) vessel motions with quadratic coupling. Similarly, Zhou 

and Chen (2008) considered a vessel with nonlinear coupled 

pitch and roll modes. Sayed and Hamed (2011) also dealt with a 

coupled pitch-roll vessel motions using the averaging method.

This paper considers the vessel rolling motions governed by a 

single-degree-of-freedom (SDOF) equation. Nonlinear rolling 

dynamics including sub-harmonic and chaotic motions of a vessel 

in beam waves are extensively investigated. Bifurcation analysis 

has been employed to examine the ranges in detail where 
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nonlinear phenomena are observed under the variations of control 

parameters. Bifurcation is one of the important characteristics for 

dynamical analysis. It can provide models of transitions and 

instabilities as some control parameters are varied (Strogatz, 

1994). 

2. Mathematical Formulation

2.1 System description

  For undamped or proportionally damped systems, vessel rolls 

about a roll center, like a pendulum, can be decoupled from 

sway (Wang, 2010). As depicted in Fig. 1, for the body frame 

( ), the vessel is constrained to rotate in a one 

dimensional motion about the roll axis () through its center of 

gravity (G). 

Fig. 1. Roll motion of a vessel in regular beam seas.

In general, the scaled equation of roll motion for a simple 

harmonic wave is,

           cos         (1)

  with   


,      and     





 

where  represents the scaled roll angle () with the roll 

rate of  () and the acceleration of  ().   is 

the scaled damping function,   is a scaled polynomial that 

approximates the restoring curve,   is a constant bias moment 

which might be due to a steady wind or an imbalance in cargo 

load,   is the amplitude of the scaled external periodic force, 

 represents the non-dimensional time,  is the excitation 

frequency (),  is the natural angular frequency (), 

 describes the ratio of excitation to natural frequency,  is the 

rotational moment of inertia,  is the added moment of inertia 

due to the surrounding fluid,  is the vanishing angle in still 

water for the initially symmetric GZ (righting arm) and  is 

the wave slope (Bikdash et al., 1994; Spyrou et al., 2000; 

Spyrou et al., 2002).

  For the uncoupled rolling motion under periodic waves, the 

governing equation (1) is described by the following SDOF 

(single-degree-of-freedom) model:

           ∆
         (2)

where  is the moment of inertia () of the vessel about 

the roll axis,  is the hydrodynamic added mass coefficient 

(),  is the linear roll hydrodynamic and viscous 

damping coefficient (), ∆ is the displacement of the 

vessel,   is a polynomial approximation to the roll 

restoring moment curve,  denotes the wave exciting moment 

from beam seas, and the derivatives are denoted with respect to 

dimensional time  (Jiang et al., 1996).   

  The mathematical treatment is simplified by approximating the 

diagram by an odd-order polynomial. The nonlinear restoring arm 

(moment curve) can be approximated by following the linear and 

cubic polynomials of :

    
        (3)

where  is the coefficient of linear restoring moment and  

is the nonlinear coefficient. This linear-plus-cubic approximation 

is reliable only for moderate values of the roll angle (< 35°) 

(Malara et al., 2014). For small angle rolling, the linear restoring 

term is dominant. On the other hand, the nonlinear term is 

effective as the roll angle increases (Wu and McCue, 2008). It is 

clear that at least a fifth-order polynomial is needed to precisely 

describe the   curve around loll angle and to the angle of 

vanishing stability (Falzarano, 1990). 

  The damping moment term is difficult to quantify because 

these components are coupled with each other (Chai et al., 

2016). In fact, the roll damping moment depends on many 

factors such as the speed, the vessel profile, anti-roll fins and 

bilge keels (Bikdash et al., 1994). Moreover, a cubic typed 
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viscous damping term may be added to the equation (2) as:

          

 ∆  ∆

       (4)

where   is the cubic damping coefficient for nonlinear damper. 

In addition, , ,  and excitation   are calculated 

by the commercial hydrodynamic SHIPMO program (Jiang et al., 

1996). This program is based on the strip theory, providing 

dynamical behaviors of vessels in the frequency domain. The roll 

excitation in beam seas can be expressed in the following form:

      cos         (5)

where  is the rolling moment amplitude ( ) per unit wave 

amplitude at frequency  and  is the wave amplitude (Jiang et 

al., 1996). The excitation harmonic function has the period of 

  () and the frequency () of    . From 

Wang (2010) and Liu et al. (2007), equation (4) can be scaled into 

a non-dimensional homoclinic equation form using perturbation 

parameter :

  ∆


  ∆

 ∆


 

    




  ∆


cos        (6)

with    ,    and   


. Then, the simplified 

expression can be obtained from:

    

     cos       (7)

where 

 


∆

 
,        


   

∆
  

     


   



∆
,      


 

 
 


∆


.

By having  = , = , and  =  , the scaling parameter 

 is only used for the theoretical derivation and does not affect 

dynamical results (Su and Falzarano, 2013). It is a small 

bookkeeping device artificially introduced to help clarify the order 

of magnitude of the damping and excitation terms (Bikdash et al., 

1994; Roberts and Vasta, 2000). In the above equation,  and  

control the amount of damping,  controls the amount of 

non-linearity in the restoring force, and   is the amplitude of the 

periodic driving force. 

3. Simulation Tests

  In this numerical analysis, the nonlinear dynamical characteristics 

are demonstrated such as equilibrium, stability, periodicity with 

limit cycle, bifurcations and chaos. The data of the calm dredge, 

Patti-B (Jiang et al., 1996) is used for our numerical study, as 

listed in Table 1. Patti-B capsized due to the combined effects 

of water trapped on its deck. Equation (7) has been numerically 

integrated with the fourth-order Runge-Kutta method with a 

time step of ∆  (s) since the simulation results are 

comparatively stable over time if the step size is less than this 

value. An improper selection of time step could eventually lead to 

numerical instability (Lee and You, 2018). The phase portraits, 

time history curves and bifurcation diagram of a vessel are 

extensively described in this section. Numerical integration is the 

only way to obtain information about the trajectory because most 

nonlinear differential equations are not soluble analytically. 

Bifurcation techniques are applied to investigate how the rolling 

motion changes as the control parameter of frequency ratio  is 

changed. Considering the values of the state variables   and , 

bifurcation diagrams (variable  versus control parameter ) of 

the vessel model are depicted in Fig. 2. In addition to the 

bifurcation diagram, time history curves and phase portraits are 

displayed in Fig. 3. The time series shows  as a function of  

and the phase portrait depicts the time series plotted in the  

phase plane. The abscissa in Figs 3 (a), (c), (e), (g), (i) and (k) 

means roll angle () and the ordinate denotes the roll rate of  

(). The phase portrait provides a lot of information on the 

behaviors of a dynamical system. 

  Fig. 2 (a) is the bifurcation diagram obtained by varying  

from 0.1 to 1.8 for   . In order to show the different 

periodic motions between chaotic clouds of dots, the magnification 

zooms of a part of Fig. 2 (a) are depicted in Figs. 2 (b), (c) and 

(d) in the range of frequency ratio . On increasing 

the value of , one can see chaotic behavior interspersed with 
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intermittent periodic windows. The chaotic region is widely spread 

at system parameter  in the range of about 0.1 to 0.9. When the 

value of the control parameter is increased beyond the chaotic 

solution’s region, periodic solutions of the model are dominant in 

the range of . It is interesting to note that the 

different types of sub-harmonic motions (or periodic-orbit families) 

such as  ,  ,  ,   exist in the range of frequency ratio 

, illustrating bifurcations eventually leading to 

chaos. 

  In order to understand the bifurcation diagram, we illustrate the 

phase portraits and time series curves in Fig. 3. In the case that 

, one can see a period-4 oscillations with a time period 

of 19 seconds, as shown in Figs. 3 (a) and (b). Also, Figs. 3 (c) 

and (d) depict period-3 oscillations and time series for . 

Figs. 3 (e) and (f) illustrate the system responses to be 

sub-harmonics with a time period of 9.5 seconds for . 

Figs. 3 (g) and (h) depict chaotic behaviors in the case of 

. In general, the chaotic solutions reveal wandering 

solutions of irregularly oscillating types without a uniform pattern. 

For the frequency ratio of close to  , the stable solutions 

of the period-5 oscillation window appear with a time period of 23 

seconds, as shown in Fig. 3 (i) and (j). From the Figs. 3 (k) and 

(l), it can be seen that the dynamical response is periodic and the 

phase plane plot is symmetrical with a time period of 6.3 seconds 

for . 

Parameters Value

 , vessel length 22.9 

∆ , vessel displacement 0.237 × 107 

 , linear restoring arm 0.214 

 , nonlinear restoring arm -0.671 

   , mass moment of 

inertia
0.147 × 107  ∙

 , natural angular frequency 0.587 

 , linear damping
0.321 × 104 

 ∙

 , nonlinear damping 0.988× 105  ∙

 , non-dimensional value 0.0037

 , non-dimensional value 0.0672

, non-dimensional value 3.1355

Table 1. Numerical data for model parameters (Patti-B)

(a)

(b)

(c)

(d)

Fig. 2. Bifurcation analysis: (a) bifurcation diagram varying  

from 0.1 to 1.8 for =0.5; (b), (c) and (d) magnification 

of a part of the bifurcation diagram of Fig. 2 (a).
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(a) frequency ratio =0.34

(b) time series for frequency ratio =0.34

(c) frequency ratio =0.43

(d) time series for frequency ratio =0.43

(e) frequency ratio =0.66

(f) time series for frequency ratio =0.66

(g) frequency ratio =0.69 

(h) time series for frequency ratio =0.69 
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(i) frequency ratio =0.83

(j) time series for frequency ratio =0.83

(k) frequency ratio =1.01 

(l) time series for frequency ratio =1.01

Fig. 3. Phase portraits and time history curves varying  (0.34, 

0.43, 0.66, 0.69, 0.83 and 1.01) for =0.5.

4. Conclusions

  Nonlinear dynamical analysis of a vessel in regular beam waves 

have been extensively studied in this paper. Periodic, sub-harmonic 

(periodic-orbit families), limit cycle, and chaotic motion are 

depicted in the phase plane. Particularly, the bifurcation diagram is 

used to show the range in detail where nonlinear phenomena are 

observed under the variations of control parameters. 

1) In the range of frequency ratio , different types 

of stable sub-harmonic families exist, such as  ,  ,   and 

 .

2) On increasing frequency , one can see chaotic behaviors 

interspersed with intermittent periodic windows. The chaotic region 

is widely spread at system parameter  in the range about 0.1 to 

0.9. It is found that the rolling motions show complicated 

dynamical behaviors in regular beam waves.

3) When the value of the control parameter is increased beyond 

the chaotic region, periodic solutions of the model are dominant in 

the range of frequency ratio .

  Finally, this paper presents the qualitative behaviors of the 

rolling motion in beam waves. It is very important to note that 

various nonlinear phenomena can be observed according to the 

slight variations of parameter. More practical systems including 

coupled roll, pitch, sway and heave will be considered in future 

studies. 
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